Geology and Petrography of Uraniferous Bitumens in Permo-Carboniferous Sediments (Vrchlabí, Czech Republic)
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Samples and Their Basic Characterization
3.2. Uranium Determination by INAA
3.3. Backscattered Scanning Electron Microscopy
3.4. Optical Petrography
4. Results
4.1. Uranium, Ash, and Organic Carbon Contents
4.2. Organic Petrography
4.3. Uranium Facies
5. Discussion
5.1. Bitumen Morphology and Formation
5.2. Optical Anisotropy of Radiolytically Altered Bitumen. Radiation-Induced Halos
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boyle, R.W. Geochemical Prospecting for Thorium and Uranium Deposits; Elsevier Scientific Pub. Co.: Amsterdam, The Netherlands, 1982; 507p, ISBN 0-444-42070-3. [Google Scholar]
- Kříbek, B.; Žák, K.; Spangenberg, J.E.; Jehlička, J.; Prokeš, S.; Komínek, J. Bitumens in the late Variscan hydrothermal vein-type uranium deposit of Příbram, Czech Republic: Sources, Radiation-Induced Alteration and Relation to Mineralization. Econ. Geol. 1999, 94, 1093–1114. [Google Scholar] [CrossRef]
- Fuchs, S.H.J.; Schumman, D.; Williams-Jones, A.E.; Murray, A.J.; Couillard, M.; Lagarec, K.; Phaneuf, M.W.; Vali, H. Gold and uranium concentration by interaction of immiscible fluids (hydrothermal and hydrocarbon) in the Carbon Leader Reef, Witwatersrand Supergroup. S. Afr. Precambrian Res. 2017, 293, 39–55. [Google Scholar] [CrossRef] [Green Version]
- Kříbek, B. The Role of Organic Substances in the Processes of Hydrothermal Mineralization. Geol. Carpath. 1981, 32, 605–614. Available online: http://www.geologicacarpathica.com/browse-journal/authors/bohdan-kribek/ (accessed on 26 April 2022).
- Jacob, H. Classification, structure, genesis and practical importance of natural solid oil bitumen (“Migrabitumen”). Int. J. Coal. Geol. 1989, 11, 65–79. [Google Scholar] [CrossRef]
- Jacob, H. Nomenclature, Classification, Characterization, and Genesis of Natural Solid Bitumen (Migrabitumen). In Bitumens in Ore Deposits; Parnell, J., Kucha, H., Landais, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 11–27. [Google Scholar] [CrossRef]
- England, G.L.; Rasmussen, B.; Krapež, B.; Groves, D.I. The origin of uraninite, bitumen nodules, and carbon seams in Witwatersrand gold-uranium-pyrite ore deposits based on a Permo-Triassic analogue. Econ. Geol. 2001, 96, 1907–1920. [Google Scholar] [CrossRef]
- Machovič, V.; Havelcová, M.; Sýkorová, I.; Borecká, L.; Lapčák, L.; Mizera, J.; Kříbek, B.; Krist, P. Raman mapping of coal halos induced by uranium mineral radiation. Spectrochim. Acta A 2021, 246, 118996. [Google Scholar] [CrossRef]
- Ellsworth, H. Thucholite, a Remarkable Primary Carbon Mineral from the vicinity of Parry Sound, Ontario. Am. Mineral. 1928, 13, 419–441. Available online: http://www.minsocam.org/ammin/AM13/AM13_419.pdf (accessed on 26 April 2022).
- Ellsworth, H. Thucholite and Uraninite from Wallingford Mine, Near Buckingham, Quebec. Am. Mineral. 1928, 13, 442–448. Available online: http://www.minsocam.org/ammin/AM13/AM13_442.pdf (accessed on 26 April 2022).
- Eskenazy, G.M.; Velichkov, D. Radium in Bulgarian coals. Int. J. Coal. Geol. 2012, 94, 296–301. [Google Scholar] [CrossRef]
- Sýkorová, I.; Kříbek, B.; Havelcová, M.; Machovič, V.; Špaldoňová, A.; Lapčák, L.; Knésl, I.; Blažek, J. Radiation- and self-ignition induced alterations of Permian uraniferous coal from the abandoned Novátor mine waste dump (Czech Republic). Int. J. Coal. Geol. 2016, 168, 162–178. [Google Scholar] [CrossRef]
- Kříbek, B.; Sýkorová, I.; Veselovský, F.; Laufek, F.; Malec, J.; Knésl, I.; Majer, V. Trace element geochemistry of self-burning and weathering of a mineralized coal waste dump: The Novátor mine, Czech Republic. Int. J. Coal. Geol. 2017, 173, 158–175. [Google Scholar] [CrossRef]
- Havelcová, M.; Machovič, V.; Mizera, J.; Sýkorová, I.; Borecká, L.; Kopecký, L. A multi-instrumental geochemical study of anomalous uranium enrichment in coal. J. Environ. Radioactiv. 2014, 137, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Rallakis, D.; Michels, R.; Brouand, M.; Parize, O.; Cathelineau, M. The role of organic matter on uranium precipitation in Zoovch Ovoo, Mongolia. Minerals 2019, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Lecomte, A.; Cathelineau, M.; Michels, R.; Peiffert, C.; Brouand, M. Uranium mineralization in the Alum Shale Formation (Sweden): Evolution of a U-rich marine black shale from sedimentation to metamorphism. Ore Geol. Rev. 2017, 88, 71–98. [Google Scholar] [CrossRef]
- Liu, B.; Mastalerz, M.; Schieber, J.; Teng, J. Association of uranium with macerals in marine black shales: Insights from the Upper Devonian New Albany Shale, Illinois Basin. Int. J. Coal. Geol. 2020, 217, 103351. [Google Scholar] [CrossRef]
- Breger, I.A. The Role of Organic Matter in the Accumulation of Uranium: The Organic Geochemistry of the Coal-Uranium Association. In Formation of Uranium Ore Deposits; International Atomic Energy Agency (IAEA): Vienna, Austria, 1974; pp. 99–124. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:6198393 (accessed on 26 April 2022).
- Gentry, R.V. Radiohalos in coalified wood: New evidence relating to the time of uranium introduction and coalification. Science 1976, 194, 315–318. [Google Scholar] [CrossRef]
- Leventhal, J.S.; Daws, T.A.; Frye, J.S. Organic geochemical analysis of sedimentary organic matter associated with uranium. Appl. Geochem. 1986, 1, 241–247. [Google Scholar] [CrossRef]
- Dubanský, A.; Jahoda, K.; Habersbergerová, A. Anthraxolite in the Barrandian part of the Bohemian Massif. J. Geol. Sci. Technol. Geochem. 1987, 22, 9–50. [Google Scholar]
- Parnell, J. Chemical Age Dating of Hydrocarbon Migration Using Uraniferous Bitumens, Czech-Polish Border Region. In Bitumens in Ore Deposits; Parnell, J., Kucha, H., Landais, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 510–517. Available online: https://link.springer.com/chapter/10.1007/978-3-642-85806-2_28 (accessed on 26 April 2022).
- Smieja-Król, B.; Duber, S.; Rouzaud, J.N. Multiscale organisation of organic matter associated with gold and uranium minerals in the Witwatersrand basin, South Africa. Int. J. Coal. Geol. 2009, 78, 77–88. [Google Scholar] [CrossRef]
- Klubov, B.A. Prirodnyje bitumy Krkonošskogo predgornogo bassejna (Bitumens of the Krkonoše Mts. piedmont basin). Otečestvennaja Geol. 1993, 9, 3–9. [Google Scholar]
- Tásler, R.; Prouza, V. Podkrkonošská Pánev—Zhodnocení Geologických a Uhelně Ložiskových Poměrů (Krkonoše Piedmont Basin—Evaluation of Geology and Coal-Geology Relations); Czech Geologic Survey: Prague, Czech Republic, 1985; 60p. [Google Scholar]
- Martínek, K.; Blecha, M.; Daněk, V.; Franců, J.; Hladíková, J.; Johnová, R.; Uličný, D. Record of paleoenvironmental changes in a Lower Permian organic rich lacustrine succession, integrated sedimentological and geochemical study of the Rudník member, Krkonoše Piedmont Basin, Czech Republic. Palaeogr. Palaeoclimatol. Palaeoecol. 2006, 230, 85–128. [Google Scholar] [CrossRef]
- Opluštil, S.; Schmitz, M.; Kachlík, V.; Štamberg, S. Re-assessment of lithostratigraphy, biostratigraphy, and volcanic activity of the Late Paleozoic Intra-Sudetic, Krkonoše Piedmont and Mnichovo Hradiště basins (Czech Republic) based on new U-Pb CA-ID-TIMS ages. Bull. Geosci. 2016, 91, 399–432. [Google Scholar] [CrossRef]
- Martínek, K.; Štolfová, K. Provenance study of Permian non-marine sandstones and conglomerates of the Krkonoše Piedmont Basin (Czech Republic): Exotic marine limestone pebbles, heavy minerals and garnet. Bull. Geosci. 2009, 84, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Chaloupský, J. Geologie Krkonoš a Jizerských hor (Geology of the Krkonoše and Jizerské Hory Mts.); Academia: Prague, Czech Republic, 1989; 289p. [Google Scholar]
- Šimůnek, Z.; Zajíc, J.; Drábková, J. Paleontologické Zpracování Sběrů z Lokality Vrchlabí—Zářez Silnice na jz. Okraji Města (Paleontological Study of the Vrchlabí Road-Cut on the SE Town Margin); Czech Geological Survey: Prague, Czechoslovakia, 1990; 107p. [Google Scholar]
- Prouza, V. Permokarbon Západní a Centrální Části Podkrkonošské Pánve (Permian-Carboniferous Formations of the Western and Central Parts of the Krkonoše Piedmont Basin); Czech Geological Survey: Prague, Czech Republic, 2005; 13p, Available online: https://www.google.com/url?esrc=s&q=&rct=j&sa=U&url=http://www.geology.cz/svet-geologie/vylety/pruvodce/Permokarbon_zapadni_a_centralni_casti_podkrkonosske_panv.pdf (accessed on 26 April 2022).
- Prouza, V.; Coubal, M.; Adamovič, J. Southeastern Continuation of the Lusatian Fault in the Western Krkonoše Mts. Piedmont Region. Geosci. Res. Rep. 2013, 46, 59–63. Available online: http://www.geology.cz/zpravy/en/detail/Zpravy_2012-11 (accessed on 26 April 2022).
- Coubal, M.; Málek, J.; Adamovič, J.; Štěpančíková, P. Late Cretaceous and Cenozoic dynamics of the Bohemian Massif inferred from the paleostress history of the Lusatian Fault Belt. J. Geodyn. 2015, 87, 26–49. [Google Scholar] [CrossRef]
- Mizera, J.; Řanda, Z. Instrumental neutron and photon activation analyses of selected geochemical reference materials. J. Radioanal. Nucl. Chem. 2010, 284, 157–163. [Google Scholar] [CrossRef]
- Pouchou, J.L.; Pichoir, F. ″PAP″ φ(ρZ) Procedure for Improved Quantitative Microanalysis. In Microbeam Analysis; Armstrong, J.T., Ed.; San Francisco Press: San Francisco, CA, USA, 1985; pp. 104–106. [Google Scholar]
- Taylor, G.H.; Teichmüller, M.; Davis, A.; Diessel, C.F.K.; Littke, R.; Robert, P. Organic Petrology; Gebrüder Borntraeger: Berlin/Stuttgart, Germany, 1998; 704p, ISBN 978-3-443-01036-2. [Google Scholar]
- Jedwab, J. Significance and Use of Optimal Phenomenon in Uraniferous Caustobioliths. In Coal Science. Advances in Chemistry No. 55; Given, P.H., Ed.; American Chemical Society: Washington, DC, USA, 1966; pp. 119–132. [Google Scholar]
- Havelcová, M.; Machovič, V.; Mizera, J.; Sýkorová, I.; René, M.; Borecká, L.; Lapčák, L.; Bičáková, O.; Janeček, O.; Dvořák, Z. Structural changes in amber due to uranium mineralization. J. Environ. Radioactiv. 2016, 158–159, 89–101. [Google Scholar] [CrossRef]
- Khan, I.; Zhong, N.; Luo, Q.; Ai, J.; Yao, L.; Luo, P. Maceral composition and origin of organic matter input in Neoproterozoic-Lower Cambrian organic-rich shales of Salt Range Formation, upper Indus, Pakistan. Int. J. Coal. Geol. 2020, 217, 103319. [Google Scholar] [CrossRef]
- Zhang, F.; Yangquan, J. Changes in physicochemical properties of organic matter by uranium irradiation: A case study from the Ordos Basin in China. J. Environ. Radioactiv. 2020, 211, 106105. [Google Scholar] [CrossRef]
- Parnell, J. Mineralogy of Uraniferous Hydrocarbons in Carboniferous-Hosted Mineral Deposits, Great Britain. Uranium 1988, 4, 197–218. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:20025730 (accessed on 26 April 2022).
- Mossman, D.J.; Nagy, B. Solid bitumens: An assessment of their characteristics, genesis, and rolein geological processes. Terra Nova 1996, 8, 114–128. [Google Scholar] [CrossRef]
- Mossman, D.J.; Gauthier-Lafaye, F.; Jackson, S.E. Black shales, organic matter, ore genesis, and hydrocarbon generation in the Paleoproterozoic Franceville Series, Gabon. Precambrian Res. 2005, 137, 253–272. [Google Scholar] [CrossRef]
- Fuchs, S.; Williams-Jones, A.E.; Jackson, S.E.; Przybylowicz, W.J. Metal distribution in pyrobitumen of the Carbon leader reef, Witwatersrand Supergroup, South Afrika: Evidence for liquid hydrocarbon more fluids. Chem. Geol. 2016, 426, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Landais, P. Organic geochemistry of sedimentary uranium ore deposits. Ore Geol. Rev. 1996, 11, 33–51. [Google Scholar] [CrossRef]
- Čadková, Z. Sedimentary Copper Deposits in the Carboniferous and Permian. In Ore Deposits and Metallogeny of the Czechoslovak Part of the Bohemian Massif; Bernard, J.H., Pouba, Z., Eds.; Academia: Prague, Czech Republic, 1986; pp. 259–260. [Google Scholar]
- Kříbek, B. The role of organic matter in the metallogeny of the Bohemian Massif. Econ. Geol. 1989, 84, 1525–1540. [Google Scholar] [CrossRef]
- Mochnacka, K.; Oberc-Dziedzic, T.; Mayer, W.; Pieczka, A. Ore mineralization related to geological evolution of the Karkonosze-Izera Massif (the Sudetes, Poland)—Towards a model. Ore Geol. Rev. 2015, 64, 215–238. [Google Scholar] [CrossRef]
- Robb, L.J.; Meyer, F.M. The Witwatersrand Basin, South Africa: Geological framework and mineralization processes. Ore Geol. Rev. 1995, 10, 67–94. [Google Scholar] [CrossRef]
- Parnell, J. Phanerozoic analogues for carbonaceous matter in Witwatersrand ore deposits. Econ. Geol. 1996, 91, 55–62. [Google Scholar] [CrossRef]
- Shahin, H. Geochemical Characteristics and Chemical Electron Microprobe U-Pb-Th Dating of Pitchblende Mineralization from Gabal Gattar Younger Granite, North Eastern Desert, Egypt. Open J. Geol. 2014, 4, 24–32. [Google Scholar] [CrossRef] [Green Version]
- René, M.; Dolníček, Z.; Sejkora, J.; Škácha, P.; Šrein, V. Uraninite, coffinite and ningyoite from vein-type uranium deposits of the Bohemian Massif (Central European Variscan Belt). Minerals 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Frimmel, H.E.; Schedel, S.; Brätz, H. Uraninite chemistry as forensic tool for provenance analysis. App. Geoch. 2014, 48, 104–121. [Google Scholar] [CrossRef]
- Suárez-Ruiz, I.; Juliao, T.; Rodrigues, S.; Camean, I. Optical parameters and microstructural properties of Solid Bitumens of high reflectance (Impsonites). Reflections on their use as an indicator of organic maturity. Int. J. Coal. Geol. 2020, 229, 158–175. [Google Scholar] [CrossRef]
- Eakin, P.A. Isotopic and petrographic studies of uraniferous hydrocarbons from around the Irish Sea Basin. J. Geol. Soc. Lond. 1989, 146, 663–673. [Google Scholar] [CrossRef]
- Rouzard, J.N.; Oberlin, A.; Trichet, J. Interaction of Uranium and Organic Matter in Uraniferous Sediments. In Advances in Organic Geochemistry; Douglas, A.G., Maxwell, J.R., Eds.; Pergamon: Oxford, UK, 1980; pp. 505–516. [Google Scholar]
Sample | Reflectance of Unaltered Organic Matter | Reflectance and Bireflectance of Radiolytically Altered Bitumen in Polarized Light | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RrV | σ | n | RB | σ | n | RminWAB | RmaxWAB | BWAB | RminSAB | RmaxSAB | BSAB | RmaxHalo | BHalo | |
V4.0 | 0.87 | 0.08 | 20 | 0.44 | 0.07 | 18 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V4.3 | n.i. | - | - | 0.66 | 0.11 | 20 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V4.6 | 0.82 | 0.08 | 20 | 0.54 | 0.08 | 15 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V7.2 | 0.96 | 0.09 | 15 | 0.73 | 0.12 | 15 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V7.6 | n.i. | - | - | 0.51 | 0.09 | 50 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V7.9 | 0.89 | 0.08 | 20 | 0.65 | 0.10 | 20 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V9.5 | n.i. | - | - | 0.53 | 0.09 | 20 | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V15.3 | 0.77 | 0.07 | 18 | n.i. | - | - | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. | n.i. |
V25455 | n.i. | - | - | 0.54 | 0.07 | 15 | 0.80 | 1.05 | 0.25 | 2.51 | 2.97 | 0.46 | 3.35 | 0.84 |
V26513 | n.i. | - | - | 0.66 | 0.08 | 17 | 1.03 | 1.26 | 0.23 | 2.72 | 3.28 | 0.56 | 3.45 | 0.73 |
V28527 | n.i. | - | - | 0.67 | 0.08 | 15 | 1.05 | 1.39 | 0.34 | 2.77 | 3.33 | 0.56 | 3.53 | 0.76 |
V29364 | n.i. | - | - | 0.65 | 0.06 | 18 | 1.00 | 1.37 | 0.37 | 2.79 | 3.37 | 0.58 | 3.69 | 0.90 |
V29899 | n.i. | - | - | 0.65 | 0.08 | 18 | 1.01 | 1.34 | 0.33 | 3.13 | 3.76 | 0.63 | 3.86 | 0.73 |
V34515 | n.i. | - | - | 0.66 | 0.09 | 17 | 1.05 | 1.42 | 0.37 | 3.25 | 3.89 | 0.64 | 4.04 | 0.79 |
V34965 | n.i. | - | - | 0.67 | 0.08 | 45 | 1.04 | 1.48 | 0.44 | 3.31 | 3.96 | 0.65 | 4.35 | 1.04 |
V35535 | n.i. | - | - | 0.67 | 0.05 | 16 | 1.09 | 1.47 | 0.38 | 3.29 | 3.95 | 0.66 | 4.28 | 0.99 |
V47964 | n.i. | - | - | 0.69 | 0.08 | 45 | 1.09 | 1.49 | 0.40 | 3.31 | 3.99 | 0.68 | 4.37 | 1.00 |
Oxide | V28527, Analyse No. | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
UO2 | 83.69 | 81.87 | 82.17 | 84.03 | 85.22 | 84.63 | 84.86 |
ThO2 | 0.01 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
FeO | 1.19 | 1.20 | 1.24 | 1.00 | 1.00 | 0.93 | 0.78 |
CaO | 2.64 | 2.72 | 2.44 | 2.95 | 2.77 | 2.91 | 2.67 |
CuO | 0.59 | 1.47 | 0.97 | 0.07 | b.d.l. | b.d.l. | b.d.l. |
SiO2 | 0.94 | 1.03 | 1.02 | 0.81 | 0.91 | 0.92 | 1.17 |
ZrO2 | 0.51 | 0.73 | 0.88 | 0.56 | 0.66 | 0.57 | 0.56 |
PbO | 3.98 | 4.11 | 4.15 | 3.43 | 3.26 | 3.09 | 2.85 |
P2O5 | 0.41 | 0.27 | 0.14 | 0.39 | 0.34 | 0.33 | 0.37 |
V2O5 | 0.37 | 0.19 | 0.35 | 0.25 | 0.20 | 0.18 | 0.14 |
As2O5 | 0.78 | 0.77 | 0.82 | 0.78 | 0.77 | 0.84 | 0.80 |
SO3 | 0.01 | 0.09 | b.d.l. | 0.13 | 0.01 | 0.08 | 0.00 |
La2O3 | b.d.l. | 0.01 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. |
Ce2O3 | b.d.l. | 0.16 | b.d.l. | 0.11 | b.d.l. | b.d.l. | b.d.l. |
Pr2O3 | b.d.l. | 0.17 | 0.26 | 0.06 | b.d.l. | 0.06 | 0.24 |
Nd2O3 | 0.19 | 0.19 | 0.31 | 0.19 | 0.26 | 0.24 | 0.22 |
Sm2O3 | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | b.d.l. | 0.13 |
Gd2O3 | b.d.l. | 0.03 | 0.40 | 0.05 | b.d.l. | 0.26 | b.d.l. |
Dy2O3 | 0.13 | b.d.l. | b.d.l. | b.d.l. | 0.09 | b.d.l. | b.d.l. |
Er2O3 | b.d.l. | 0.13 | 0.05 | b.d.l. | 0.08 | 0.10 | b.d.l. |
Y2O3 | 0.19 | 0.29 | 0.22 | 0.26 | 0.23 | 0.21 | 0.30 |
Total | 95.63 | 95.43 | 95.42 | 95.07 | 95.80 | 95.35 | 95.09 |
Oxide | P2O5 | SiO2 | SO3 | UO2 | CaO | CuO | FeO | V2O5 | Y2O3 | PbO | ZrO2 |
---|---|---|---|---|---|---|---|---|---|---|---|
As2O5 | −0.42 | −0.53 | −0.12 | −0.55 | −0.63 | 0.65 | 0.48 | −0.04 | −0.20 | 0.23 | 0.33 |
ZrO2 | −0.46 | 0.16 | −0.19 | −0.91 | −0.61 | 0.84 | 0.88 | 0.00 | −0.36 | 0.73 | |
PbO | −0.42 | 0.01 | −0.02 | −0.70 | −0.55 | 0.74 | 0.76 | 0.08 | −0.43 | ||
Y2O3 | 0.22 | 0.14 | 0.14 | 0.32 | 0.43 | -0.39 | −0.55 | −0.02 | |||
V2O5 | 0.27 | −0.09 | 0.03 | −0.09 | 0.06 | 0.03 | 0.14 | ||||
FeO | −0.39 | −0.03 | −0.20 | −0.87 | −0.71 | 0.90 | |||||
CuO | −0.53 | −0.12 | −0.24 | −0.88 | −0.77 | ||||||
CaO | 0.65 | −0.10 | 0.03 | 0.67 | |||||||
UO2 | 0.48 | −0.06 | 0.17 | ||||||||
SO3 | −0.01 | 0.06 | |||||||||
SiO2 | −0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havelcová, M.; Sýkorová, I.; René, M.; Mizera, J.; Coubal, M.; Machovič, V.; Strunga, V.; Goliáš, V. Geology and Petrography of Uraniferous Bitumens in Permo-Carboniferous Sediments (Vrchlabí, Czech Republic). Minerals 2022, 12, 544. https://doi.org/10.3390/min12050544
Havelcová M, Sýkorová I, René M, Mizera J, Coubal M, Machovič V, Strunga V, Goliáš V. Geology and Petrography of Uraniferous Bitumens in Permo-Carboniferous Sediments (Vrchlabí, Czech Republic). Minerals. 2022; 12(5):544. https://doi.org/10.3390/min12050544
Chicago/Turabian StyleHavelcová, Martina, Ivana Sýkorová, Miloš René, Jiří Mizera, Miroslav Coubal, Vladimír Machovič, Vladimír Strunga, and Viktor Goliáš. 2022. "Geology and Petrography of Uraniferous Bitumens in Permo-Carboniferous Sediments (Vrchlabí, Czech Republic)" Minerals 12, no. 5: 544. https://doi.org/10.3390/min12050544
APA StyleHavelcová, M., Sýkorová, I., René, M., Mizera, J., Coubal, M., Machovič, V., Strunga, V., & Goliáš, V. (2022). Geology and Petrography of Uraniferous Bitumens in Permo-Carboniferous Sediments (Vrchlabí, Czech Republic). Minerals, 12(5), 544. https://doi.org/10.3390/min12050544