Adsorption of Sodium of Polyaspartic Acid on Serpentine and Its Effects on Selective Pyrite/Serpentine Flotation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experiments
2.2.1. Micro-Flotation Tests
2.2.2. Zeta Potential Experiments
2.2.3. Turbidity Measurements
2.2.4. X-ray Photoelectron Spectroscopy (XPS)
2.2.5. Adsorption Experiments
3. Results
3.1. Effects of PASP on the Selective Flotation of Pyrite from Serpentine
3.2. Effect of PASP on the Hetero-Coagulation between Pyrite and Serpentine
3.3. Adsorption Mechanisms of PASP on Serpentine Surface
3.4. Influence of PASP on the Adsorption of Collector on Pyrite Surface
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hossain:, F.M.; Dlugogorski, B.Z.; Kennedy, E.M.; Belova, I.V.; Murch, G.E. Ab-Initio Electronic Structure, Optical, Dielectric and Bonding Properties of Lizardite-1T. Comput. Mater. Sci. 2011, 50, 1725–1730. [Google Scholar] [CrossRef]
- Zhao, K.; Yan, W.; Wang, X.; Wang, Z.; Gao, Z.; Wang, C.; He, W. Effect of a Novel Phosphate on the Flotation of Serpentine-Containing Copper-Nickel Sulfide Ore. Miner. Eng. 2020, 150, 106276. [Google Scholar] [CrossRef]
- Feng, B.; Peng, J.; Zhang, W.; Luo, G.; Wang, H. Removal Behavior of Slime from Pentlandite Surfaces and Its Effect on Flotation. Miner. Eng. 2018, 125, 150–154. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, X.; Chen, Y. Using Phytic Acid as a Depressant for the Selective Flotation Separation of Smithsonite from Calcite. Sep. Purif. Technol. 2022, 302, 122104. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Chen, Y.; Huang, G.; Gao, Y. Investigations on the Utilization of Konjac Glucomannan in the Flotation Separation of Chalcopyrite from Pyrite. Miner. Eng. 2020, 145, 106098. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Huang, G.; Gao, Y.; Wang, M. The Flotation Separation of Pyrite from Serpentine Using Lemon Yellow as Selective Depressant. Colloids Surf. A 2019, 581, 123823. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Gao, Y. New Perceptions into the Detrimental Influences of Serpentine on Cu-Ni Sulfide Flotation through Rheology Studies and Improved the Separation by Applying Garnet. Miner. Eng. 2021, 171, 107110. [Google Scholar] [CrossRef]
- Feng, B.; Lu, Y.; Luo, X. The Effect of Quartz on the Flotation of Pyrite Depressed by Serpentine. J. Mater. Res. Technol. 2015, 4, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Zhang, G.; Chen, Y. Studies on the Selective Flotation of Pyrite from Fine Serpentine by Using Citric Acid as Depressant. Miner. Eng. 2021, 165, 106742. [Google Scholar] [CrossRef]
- Bremmell, K.E.; Fornasiero, D.; Ralston, J. Pentlandite-Lizardite Interactions and Implications for Their Separation by Flotation. Colloids Surf. A Physicochem. Eng. Asp. 2005, 252, 207–212. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, G.; Wang, M.; Liu, D. The Critical Role of Pulp Density on Flotation Separation of Nickel-Copper Sulfide from Fine Serpentine. Minerals 2018, 8, 317. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.R.; Kipkie, W.B.; Agar, G.E. The Effect of Slime Coatings of the Serpentine Minerals, Chrysotile and Lizardite, on Pentlandite Flotation. Int. J. Miner. Process. 1980, 7, 33–42. [Google Scholar] [CrossRef]
- Lu, Y.P.; Zhang, M.Q.; Feng, Q.M.; Long, T.; Ou, L.M.; Zhang, G.F. Effect of Sodium Hexametaphosphate on Separation of Serpentine from Pyrite. Trans. Nonferrous Met. Soc. China 2011, 21, 208–213. [Google Scholar] [CrossRef]
- Feng, B.; Wang, P.; Lu, Y.; Feng, Q. Role of Sodium Hexametaphosphate in Flotation of A Nickel Ore. Physicochem. Probl. Miner. Process. 2016, 52, 170–181. [Google Scholar]
- Rashchi, F.; Finch, J.A. Polyphosphates: A Review. Their Chemistry and Application with Particular Reference to Mineral Processing. Miner. Eng. 2000, 13, 1019–1035. [Google Scholar] [CrossRef]
- Feng, B.; Lu, Y.; Feng, Q.; Li, H. Solution Chemistry of Sodium Silicate and Implications for Pyrite Flotation. Ind. Eng. Chem. Res. 2012, 51, 12089–12094. [Google Scholar] [CrossRef]
- Feng, B.; Zhang, W.; Guo, Y.; Peng, J.; Ning, X.; Wang, H. Synergistic Effect of Acidified Water Glass and Locust Bean Gum in the Flotation of a Refractory Copper Sulfide Ore. J. Clean. Prod. 2018, 202, 1077–1084. [Google Scholar] [CrossRef]
- Bicak, O.; Ekmekci, Z.; Bradshaw, D.J.; Harris, P.J. Adsorption of Guar Gum and CMC on Pyrite. Miner. Eng. 2007, 20, 996–1002. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Feng, Q.; Chen, Y. Utilization of N-Carboxymethyl Chitosan as Selective Depressants for Serpentine on the Flotation of Pyrite. Int. J. Miner. Process. 2017, 163, 45–47. [Google Scholar] [CrossRef]
- Obot, I.B.; Ul-Haq, M.I.; Sorour, A.A.; Alanazi, N.M.; Al-Abeedi, T.M.; Ali, S.A.; Al-Muallem, H.A. Modified-Polyaspartic Acid Derivatives as Effective Corrosion Inhibitor for C1018 Steel in 3.5% NaCl Saturated CO2 Brine Solution. J. Taiwan Inst. Chem. Eng. 2022, 135, 104393. [Google Scholar] [CrossRef]
- Wang, L.; Gao, H.; Song, S.; Zhou, W.; Xue, N.; Nie, Y.; Feng, B. The Depressing Role of Sodium Alginate in the Flotation of Ca2+-Activated Quartz Using Fatty Acid Collector. J. Mol. Liq. 2021, 343, 117618. [Google Scholar] [CrossRef]
- Wei, Q.; Jiao, F.; Dong, L.; Liu, X.; Qin, W. Selective Depression of Copper-Activated Sphalerite by Polyaspartic Acid during Chalcopyrite Flotation. Trans. Nonferrous Met. Soc. China 2021, 31, 1784–1795. [Google Scholar] [CrossRef]
- Chen, C.; Sun, W.; Zhu, H.; Liu, R. A Novel Green Depressant for Flotation Separation of Scheelite from Calcite. Trans. Nonferrous Met. Soc. China 2021, 31, 2493–2500. [Google Scholar] [CrossRef]
- Yang, L.; Li, Y.; Qian, B.; Hou, B. Polyaspartic Acid as a Corrosion Inhibitor for WE43 Magnesium Alloy. J. Magnes. Alloys 2015, 3, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, D.; Chen, C.; Zhang, J.; Cui, L. Adsorption Orientation of Sodium of Polyaspartic Acid Effect on Anodic Films Formed on Magnesium Alloy. Appl. Surf. Sci. 2011, 257, 7579–7585. [Google Scholar] [CrossRef]
- Liu, C.; Ai, G.; Song, S. The Effect of Amino Trimethylene Phosphonic Acid on the Flotation Separation of Pentlandite from Lizardite. Powder Technol. 2018, 336, 527–532. [Google Scholar] [CrossRef]
- Manouchehri, H.R. Pyrrhotite Flotation and Its Selectivity against Pentlandite in the Beneficiation of Nickeliferous Ores: An Electrochemistry Perspective. Miner. Metall. Process. 2014, 31, 115–125. [Google Scholar] [CrossRef]
- Feng, B.; Feng, Q.; Lu, Y. The Effect of Lizardite Surface Characteristics on Pyrite Flotation. Appl. Surf. Sci. 2012, 259, 153–158. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, X.Y.; Tian, Q.H.; Li, D.; Zhong, S.P.; Qin, H. Improved Thiourea Leaching of Gold with Additives from Calcine by Mechanical Activation and Its Mechanism. Miner. Eng. 2022, 178, 107403. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Chen, Y.; Chen, W.; Gao, Y. A Novel Method to Limit the Adverse Effect of Fine Serpentine on the Flotation of Pyrite. Minerals 2018, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Lu, Y.; Mao, G. Separation of Oxidized Pyrrhotite from Fine Fraction Serpentine. Minerals 2018, 8, 472. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Y.; Song, S.; Li, H. The Effect of Aluminum Ions on the Flotation Separation of Pentlandite from Lizardite. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 708–712. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, G.; Li, B. Electrochemical and XPS Investigations on the Galvanic Interaction between Pentlandite and Pyrrhotite in Collectorless Flotation System. Miner. Eng. 2022, 190, 107916. [Google Scholar] [CrossRef]
- Li, B.; Zhang, G.; Liu, D.; Chen, J. Selective Alteration Mechanisms of Sodium Tripolyphosphate towards Serpentine: Implications for Flotation of Pyrite from Serpentine. J. Mol. Liq. 2022, 368, 120687. [Google Scholar] [CrossRef]
- Dong, L.; Jiao, F.; Qin, W.; Liu, W. Selective Flotation of Scheelite from Calcite Using Xanthan Gum as Depressant. Miner. Eng. 2019, 138, 14–23. [Google Scholar] [CrossRef]
- Xie, T.; Yue, S.; Su, T.; Song, M.; Xu, W.; Xiao, Y.; Yang, Z.; Len, C.; Zhao, D. High Selective Oxidation of 5-Hydroxymethyl Furfural to 5-Hydroxymethyl-2-Furan Carboxylic Acid Using Ag-TiO2. Mol. Catal. 2022, 525, 112353. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Y.; Liu, C.; Huang, L.; Huang, Z.; Li, H. The Anionic Flotation of Fluorite from Barite Using Gelatinized Starch as the Depressant. Colloids Surf. A Physicochem. Eng. Asp. 2020, 597, 124794. [Google Scholar] [CrossRef]
- Boulton, A.; Fornasiero, D.; Ralston, J. Characterisation of Sphalerite and Pyrite Flotation Samples by XPS and ToF-SIMS. Int. J. Miner. Process. 2003, 70, 205–219. [Google Scholar] [CrossRef]
- Chai, C.; Xu, Y.; Xu, Y.; Liu, S.; Zhang, L. Dopamine-Modified Polyaspartic Acid as a Green Corrosion Inhibitor for Mild Steel in Acid Solution. Eur. Polym. J. 2020, 137, 109946. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, G.; Wang, M.; Zheng, S.; Li, B. Selective Separation of Smithsonite from Quartz by Using Sodium Polyaspartate as a Depressant. Colloids Surf. A Physicochem. Eng. Asp. 2022, 644, 128840. [Google Scholar] [CrossRef]
- Wang, Y.; He, G.; Abudukade, D.; Li, K.; Guo, T.; Li, S.; Xiao, Z.; Wang, J.; Nie, S. Selective Inhibition of Sodium Tripolyphosphate on Calcite in the Process of Magnesite Flotation. J. Mol. Liq. 2022, 345, 117412. [Google Scholar] [CrossRef]
- Bala, T.; Prasad, B.L.V.; Sastry, M.; Kahaly, M.U.; Waghmare, U.V. Interaction of Different Metal Ions with Carboxylic Acid Group: A Quantitative Study. J. Phys. Chem. A 2007, 111, 6183–6190. [Google Scholar] [CrossRef]
- Tang, X.; Chen, Y. Using Oxalic Acid to Eliminate the Slime Coatings of Serpentine in Pyrite Flotation. Miner. Eng. 2020, 149, 106228. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, Y.; Yang, S.; Fu, W.; Chen, X. Exploration of a Novel Depressant Polyepoxysuccinic Acid for the Flotation Separation of Pentlandite from Lizardite Slimes. Appl. Clay Sci. 2021, 202, 105939. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Zhao, G.; Zhang, Y. Adsorption of Sodium of Polyaspartic Acid on Serpentine and Its Effects on Selective Pyrite/Serpentine Flotation. Minerals 2022, 12, 1558. https://doi.org/10.3390/min12121558
Fang X, Zhao G, Zhang Y. Adsorption of Sodium of Polyaspartic Acid on Serpentine and Its Effects on Selective Pyrite/Serpentine Flotation. Minerals. 2022; 12(12):1558. https://doi.org/10.3390/min12121558
Chicago/Turabian StyleFang, Xihui, Guanfei Zhao, and Yu Zhang. 2022. "Adsorption of Sodium of Polyaspartic Acid on Serpentine and Its Effects on Selective Pyrite/Serpentine Flotation" Minerals 12, no. 12: 1558. https://doi.org/10.3390/min12121558
APA StyleFang, X., Zhao, G., & Zhang, Y. (2022). Adsorption of Sodium of Polyaspartic Acid on Serpentine and Its Effects on Selective Pyrite/Serpentine Flotation. Minerals, 12(12), 1558. https://doi.org/10.3390/min12121558