Occurrences of Niobium and Tantalum Mineralization in Mongolia
Abstract
:1. Introduction
2. Deposits
- Alkaline and peralkaline granites and syenites (Nb > Ta, also Zr, REE, U, Th).
- Peraluminous rare metal granites also known as Li-mica albite granite, Li-F granite or apogranites [9] (Ta > Nb, also Sn, Be, Li), related pegmatites and also subvolcanic equivalents-ongonites (topaz-bearing albite-rich peraluminous microleucogranites) (Ta > Nb, also Sn, W).
- Carbonatites and associated alkaline silicate rocks (Nb > Ta, also REE, Zr, P).
2.1. Alkaline and Peralkaline Granites and Syenites
2.1.1. Khalzan Buregtei
2.1.2. Ulaan Tolgoi
2.1.3. Ulaan Del
2.1.4. Khanbogd
2.2. Peraluminous Granites
2.2.1. Janchivlan
2.2.2. Avdar
2.2.3. Pegmatites
2.2.4. Ongonites
2.3. Carbonatites
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Analytical Methods
References
- Pollard, P.J. A special issue devoted to the geology of rare metal deposits—Geology of rare metal deposits—An introduction and overview. Econ. Geol. 1995, 90, 489–494. [Google Scholar] [CrossRef]
- Tauson, L.V. The Geochemical Types of Granitoids and Their Potential Ore Capacity; Nauka: Moscow, Russia, 1977; p. 280. (In Russian) [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier-Pergamon: Oxford, UK, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Černý, P.; Ercit, T.S. The classification of granitic pegmatites revisited. Can. Mineral. 2005, 43, 2005–2026. [Google Scholar] [CrossRef] [Green Version]
- Küster, D. Granitoid-hosted Ta mineralization in the Arabian-Nubian Shield—Ore deposit types, tectonometallogenetic setting and petrogenetic framework. Ore Geol. Rev. 2009, 35, 68–86. [Google Scholar] [CrossRef]
- Schulz, K.J.; Piatak, N.M.; Papp, J.F. Niobium and tantalum. In Critical Mineral Resources of the United States-Economic and Environmental Geology and Prospects for Future Supply; Schulz, K.J., DeYoung, J.H., Jr., Seal, R.R., II, Bradley, D.C., Eds.; U.S. Geological Survey Professional Paper 1802; USGS: Lawrence, KS, USA, 2017; pp. M1–M34. [Google Scholar]
- Kovalenko, V.I.; Yarmolyuk, V.V. Endogenous rare metal ore formations and rare metal metalogeny of Mongolia. Econ. Geol. 1995, 90, 520–529. [Google Scholar] [CrossRef]
- Gerel, O. Rare Metals: Tin, Tungsten, Molybdenum, Lithium, Tantalum and Niobium Deposits. In Mineral Resources of Mongolia; Gerel, O., Pirajno, F., Batkhishig, B., Dostal, J., Eds.; Modern Approaches in Solid Earth Sciences; Springer: Singapore, 2021; pp. 129–184. [Google Scholar]
- Beus, A.A.; Severov, V.A.; Citnin, A.A.; Cubbotin, K.D. Albitizated and Greisenizated Granites (Apogranites); Academy of Sciences of USSR: Moscow, Russia, 1962; 196p. (In Russian) [Google Scholar]
- Salvi, S.; Williams-Jones, A.E. Alkaline granite-syenite deposits. In Rare-Element Geochemistry and Mineral Deposits; Linnen, R.L., Samson, I.M., Eds.; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 2005; Volume 17, pp. 315–341. [Google Scholar]
- Dostal, J. Rare metal deposits associated with alkaline/peralkaline igneous rocks. Rev. Econ. Geol. 2016, 18, 33–54. [Google Scholar]
- Dostal, J. Rare Earth Element Deposits of Alkaline Igneous Rocks. Resources 2017, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Dostal, J.; Kontak, D.J.; Karl, S.M. The Early Jurassiv Bokan Mountain peralkaline granitic complex (southeastern Alaska): Geochemistry, petrogenesis and rare-metal mineralization. Lithos 2014, 202, 395–412. [Google Scholar]
- Ersay, L.; Greenough, J.D.; Larson, K.P.; Dostal, J. Zircon reveals multistage, magmatic and hydrothermal rare earth mineralization at the Debert Lake, Nova Scotia, Canada. Ore Geol. Rev. 2022, 144, 104780. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kartashov, P.M.; Kozlovskii, A.M.; Listratova, E.N.; SaL’Nikova, E.B.; Kovach, V.P.; Kozakov, I.K.; Kotov, A.B.; Yakovleva, S.Z.; et al. The Khaldzan-Buregtei Massif of peralkaline rare-metal igneous rocks: Structure, geochronology, and geodynamic setting in the Caledonides of Western Mongolia. Petrology 2004, 12, 412–436. [Google Scholar]
- Kovalenko, V.I.; Kozlovski, A.M.; Yarmolyuk, V.V. Trace element ratios as indicators of source mixing and magma differentiation of alkali granitoids and basites of the Khalzan-Buregtey massif and the Khalzan-Buregtey rare-metal deposit, western Mongolia. Petrology 2009, 17, 158–177. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmolyuk, V.V.; Kovach, V.P.; Kovalenko, D.V.; Kozlovskii, A.M.; Andreeva, I.A.; Kotov, A.B.; Salnikova, F.B. Variations in the Nd isotopic ratios and conical ratios of concentrations of incompatible elements as an indication of mixing sources of alkali granitoids and basites in the Khalzan-Buregtei massif and the Khalzan-Buregtei rare metal deposit in Western Mongolia. Petrology 2009, 17, 227–252. [Google Scholar]
- Andreeva, I.A. Genesis and mechanisms of formation of rare-metal peralkaline granites of the Khalzan Buregtey massif, Mongolia: Evidence from melt inclusions. Petrology 2016, 24, 462–476. [Google Scholar] [CrossRef]
- Kempe, U.; Möckel, R.; Graupner, T.; Kynicky, J.; Dombon, E. The genesis of Zr-Nb-REE mineralisation at Khalzan Buregtey (Western Mongolia) reconsidered. Ore Geol. Rev. 2015, 64, 602–625. [Google Scholar] [CrossRef]
- Gronen, L.H.; Sindern, S.; Katzmarzyk, J.L.; Bormann, U.; Hallmann, A.; Wotruba, H.; Meyer, F.M. Mineralogical and Chemical Characterization of Zr-REE-Nb Ores from Khalzan Buregtei (Mongolia)—Approaches to More Efficient Extraction of Rare Metals from Alkaline Granitoids. Minerals 2019, 9, 217. [Google Scholar] [CrossRef]
- Gerel, O.; Majigsuren, Y.; Munkhtsengel, B. Rare Earth Mineral Deposits. In Mineral Resources of Mongolia; Gerel, O., Pirajno, F., Batkhishig, B., Dostal, J., Eds.; Modern Approaches in Solid Earth Sciences; Springer: Singapore, 2021; pp. 185–210. [Google Scholar]
- Muff, R.; Tamiraa, A. Rare Earths of Mongolia: Evaluation of Market Opportunities for the Principal Deposits of Mongolia; Technical Report; Mineral Resources Authority of Mongolia, Ulaanbaatar/Bundesanstalt für Geowissenschaften und Rohstoffe: Hannover, Germany, 2013; 63p. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Kovalenko, V.I.; Tsaryeva, G.M.; Goreglyad, A.V.; Yarmolyuk, V.V.; Troitsky, V.A.; Hervig, R.L.; Farmer, G.L. The peralkaline granite-related Khalzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia. Econ. Geol. 1995, 90, 530–547. [Google Scholar] [CrossRef]
- Lykhin, D.A.; Yarmolyuk, V.V.; Nikiforov, A.V.; Kozlovsky, A.M.; Magazina, L.O. Ulan-Tolgoi Ta-Nb deposit: The role of magmatism in the formation of rare metal mineralization. Geol. Ore Depos. 2018, 60, 461–485. [Google Scholar] [CrossRef]
- Kynicky, J.; Chakhmouradian, A.R.; Xu, C.; Krmicek, L.; Galiova, M. Distribution and evolution of zirconium mineralization in peralkaline granites and associated pegmatites of the Khanbogd complex, southern Mongolia. Can. Mineral. 2011, 49, 947–965. [Google Scholar] [CrossRef] [Green Version]
- Yarmolyuk, V.V.; Nikiforov, A.V.; Salnikova, E.B. Rare-metal granitoids of the Ulug Tanzek Deposit (Eastern Tyva): Age and tectonic setting. Dokl. Earth Sci. 2010, 430, 95–100. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Lykhin, D.A.; Kozlovskii, A.M. Composition, sources, and mechanisms of origin of rare metal granitoids in the Late Paleozoic Eastern Sayan Zone of alkaline magmatism: A case study of the Ulaan Tolgoi Massif. Petrology 2016, 24, 447–496. [Google Scholar] [CrossRef]
- Oyunbat, S. Petrology and mineralogy of the Ulaan Del Zr-Nb-REE deposit, Lake Zone, Western Mongolia. Mong. Geosci. 2020, 50, 45–62. [Google Scholar] [CrossRef]
- Kovalenko, V.I.; Yarmoluyk, V.V.; Salnikova, E.B.; Kozlovsky, A.M.; Kotov, A.B.; Kovach, V.P.; Savatenkov, V.M.; Vladykin, N.V.; Ponomarchuk, V.A. Geology, geochronology, and geodynamics of the Khanbogd alkali granite pluton in southern Mongolia. Geotectonics 2006, 40, 450–466. [Google Scholar] [CrossRef]
- Vladykin, N.V. Petrology and composition of rare-metal alkaline rocks in the South Gobi Desert, Mongolia. Russ. Geol. Geophys. 2013, 54, 416–435. [Google Scholar] [CrossRef]
- Linnen, R.L.; Cuney, M. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In Rare-Element Geochemistry and Mineral Deposits; Linnen, R.L., Samson, I.M., Eds.; Short Course Notes; Geological Association of Canada: St. John’s, NL, Canada, 2005; Volume 17, pp. 45–68. [Google Scholar]
- Kovalenko, V.I.; Kuzmin, M.I.; Zonenshain, L.P. Rare Metal Granitoids of Mongolia; Nauka: Moscow, Russia, 1971. (In Russian) [Google Scholar]
- Antipin, V.; Gerel, O.; Perepelov, A.; Odgerel, D.; Zolboo, T. Late Paleozoic and Early Mesozoic rare-metal granites in Central Mongolia and Baikal region: Review of geochemistry, possible magma sources and related mineralization. J. Geosci. 2016, 61, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Antipin, V.S.; Kuzmin, M.I.; Odgerel, D.; Kushch, L.V.; Sheptyakova, N.V. Rare-metal Li-F granites in the Late Paleozoic, Early Mesozoic, and Late Mesozoic magmatic areas of Central Asia. Russ. Geol. Geophys. 2022, 63, 772–788. [Google Scholar] [CrossRef]
- Beskin, S.M.; Grebennikov, A.M.; Matias, V.V. Khangilai granite pluton and the associated Orlovka tantalum deposit in Transbaikalia. Petrology 1994, 2, 68–87. [Google Scholar]
- Beskin, S.M.; Zagorsky, V.E.; Kuznetsova, L.G.; Kursinov, I.I.; Pavlova, V.N.; Prokofiev, V.Y.; Tsyganov, A.E.; Shmakin, B.M. Etyka rare-metal ore field in Eastern Transbaikalia (Eastern Siberia). Geol. Ore Depos. 1994, 36, 310–325. [Google Scholar]
- Breiter, K.; Badanina, E.; Durišová, J.; Dosbaba, M.; Syritso, L. Chemistry of quartz—A new insight into the origin of the Orlovka Ta-Li deposit, Eastern Transbaikalia, Russia. Lithos 2019, 348, 105206. [Google Scholar] [CrossRef]
- Yarmolyuk, V.V.; Kovalenko, V.I.; Salnikova, E.B.; Budnikov, S.V.; Kovach, V.P.; Kotov, A.B.; Ponomarchuk, V.A. Tectono-magmatic zoning, magma sources, and geodynamics of the Early Mesozoic Mongolo-Transbaikalian magmatic area. Geotectonics 2002, 36, 293–311. [Google Scholar]
- Li, S.; Wang, T.; Wilde, S.A.; Tong, Y. Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment). Earth-Sci. Rev. 2013, 126, 206–234. [Google Scholar] [CrossRef]
- Gerel, O.; Kanisawa, S.; Ishikawa, K. Petrological characteristics of granites from the Avdrant and Janchivlan plutons, Khentei Range, Central Mongolia. In Problems of Geodynamics and Metallogeny of Mongolia; Mongolian Academy of Sciences: Ulaanbaatar, Mongolia, 1999; Volume 13, pp. 34–39. [Google Scholar]
- Dostal, J.; Owen, J.V.; Shellnutt, J.G.; Keppie, J.D.; Gerel, O.; Corney, R. Petrogenesis of the Triassic Bayan-Ulan alkaline granitic pluton in the North Gobi rift of central Mongolia: Implications for the evolution of the Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt. J. Asian Earth Sci. 2015, 109, 50–62. [Google Scholar] [CrossRef]
- Irber, W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta 1999, 63, 489–508. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Capdevila, R.; Martineau, F.; Wang, Y.X.; Zhao, Z.H. Highly evolved juvenile granites with tetrad REE patterns: The Woduhe and Baerzhe granites from the Great Xing’an (Khingan) Mountains in NE China. Lithos 2001, 59, 171–198. [Google Scholar] [CrossRef]
- Shaw, D.M. A review of K-Rb fractionation trends by covariance analyses. Geochim. Cosmochim. Acta 1968, 32, 573–601. [Google Scholar] [CrossRef]
- Dostal, J.; Chatterjee, A.K. Origin of topaz-bearing and related peraluminous granite of the Late Devonian Davis Lake Pluton, Nova Scotia, Canada: Crystal versus fluid fractionation. Chem. Geol. 1995, 123, 67–88. [Google Scholar] [CrossRef]
- Dostal, J.; Chatterjee, A.K. Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada). Chem. Geol. 2000, 163, 207–218. [Google Scholar] [CrossRef]
- Shaw, D.M.; Dostal, J.; Keays, R.R. Additional estimates of continental surface Precambrian Shield composition in Canada. Geochim. Cosmochim. Acta 1976, 40, 73–83. [Google Scholar] [CrossRef]
- Ballouard, C.; Poujol, M.; Boulvais, P.; Branquet, Y.; Tarese, R.; Vineresse, J.L. Nb-Ta fractionation in peraluminous granites: A marker of the magmatic-hydrothermal transition. Geology 2016, 44, 231–234. [Google Scholar] [CrossRef]
- Zaraisky, G.P.; Aksyuk, A.M.; Devyatova, V.N.; Udoratina, O.V.; Chevychelov, V.Y. The Zr/Hf ratio as a fractionation indicator of rare metal granites. Petrology 2009, 17, 25–45. [Google Scholar] [CrossRef]
- Boynton, W.V. Cosmochemistry of the rare earth elements meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Kovalenko, V.I.; Kostitsyn, Y.A.; Yarmolyuk, V.V.; Budnikov, S.V.; Kovach, V.P.; Kotov, A.B.; Salnikova, E.B.; Antipin, V.S. Magma sources and the isotopic (Sr and Nd) evolution of Li–F rare-metal granites. Petrology 1999, 7, 383–409. [Google Scholar]
- Kovalenko, V.I.; Koval, P.V. Endogenic rare earth element and rare metal ore formation in Mongolia. In Endogenic Ore Formation of Mongolia; Nauka: Moscow, Russia, 1984; pp. 50–75. (In Russian) [Google Scholar]
- Kovalenko, V.I.; Kovalenko, N.I. Ongonites (Topaz Bearing Quartz Keratophyre)-Subvolcanic Analogues of Rare Metal Li–F Granites; Nauka: Moscow, Russia, 1976; 124p. (In Russian) [Google Scholar]
- Dostal, J.; Kontak, D.J.; Gerel, O.; Shellnutt, J.G.; Favek, M. Cretaceous ongonites (topaz-bearing albite-rich microleucogranites) from Ongon Khairkhan, Central Mongolia: Products of extreme magmatic fractionation and pervasive metasomatic fluid: Rock interaction. Lithos 2015, 236, 173–189. [Google Scholar] [CrossRef]
- Bau, M. Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf and lanthanide tetrad effects. Contrib. Mineral. Petrol. 1996, 123, 323–333. [Google Scholar] [CrossRef]
- Mohamadizadeh, M.; Mojtahedzadeh, S.H.; Ayati, F. Ga-(Nb+Ta)-(Nb/Ta)(Zr/Hf) Ternary Diagram: An Excellent Tool for Discriminating Barren and Ta-Hosting Granite-Pegmatite Systems. J. Earth Sci. 2020, 31, 551–558. [Google Scholar] [CrossRef]
- Gerel, O. Phanerozoic felsic magmatism and related mineralization in Mongolia. Bull. Geol. Surv. Jpn. 1998, 49, 239–248. [Google Scholar]
- Jahn, B.M.; Capdevila, R.; Liu, D.; Vernov, A.; Badarch, G. Sources of Phanerozoic granitoids in the transect Bayanhongor–Ulan Baator, Mongolia: Geochemical and Nd isotopic evidence, and implications of Phanerozoic crustal growth. J. Asian Earth Sci. 2004, 23, 629–653. [Google Scholar] [CrossRef]
- Bell, K. Carbonatites: Genesis and Evolution; Unwin Hyman: London, UK, 1989; p. 618. [Google Scholar]
- Yaxley, G.M.; Anenburg, M.; Tappe, S.; Decree, S.; Guzmics, T. Carbonatites: Classification, Sources, Evolution, and Emplacement. Annu. Rev. Earth Planet. Sci. 2022, 50, 261–293. [Google Scholar] [CrossRef]
- Mitchell, R.H. Carbonatites and carbonatites and carbonatites. Can. Mineral. 2005, 43, 2049–2068. [Google Scholar] [CrossRef]
- Baatar, M.; Ochir, G.; Kynicky, J.; Iizumi, S.; Comin-Chiaramonti, P. Some notes on the Lugiin Gol, Mushgai Khudag and Bayan Khoshuu Alkaline Complexes, Southern Mongolia. Int. J. Geosci. 2013, 4, 1200–1214. [Google Scholar] [CrossRef] [Green Version]
- Nikolenko, A.M.; Redina, A.A.; Doroshkevich, A.G.; Prokopyev, I.R.; Ragozin, A.L.; Vladykin, N.V. The origin of magnetite-apatite rocks of Mushgai-Khudag complex, South Mongolia: Mineral chemistry and studies of melt and fluid inclusions. Lithos 2018, 320, 567–582. [Google Scholar] [CrossRef]
- Nikiforov, A.V.; Yarmolyuk, V.V. Late Mesozoic carbonatite provinces in Central Asia: Their compositions, sources and genetic settings. Gondwana Res. 2019, 69, 56–72. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dostal, J.; Gerel, O. Occurrences of Niobium and Tantalum Mineralization in Mongolia. Minerals 2022, 12, 1529. https://doi.org/10.3390/min12121529
Dostal J, Gerel O. Occurrences of Niobium and Tantalum Mineralization in Mongolia. Minerals. 2022; 12(12):1529. https://doi.org/10.3390/min12121529
Chicago/Turabian StyleDostal, Jaroslav, and Ochir Gerel. 2022. "Occurrences of Niobium and Tantalum Mineralization in Mongolia" Minerals 12, no. 12: 1529. https://doi.org/10.3390/min12121529
APA StyleDostal, J., & Gerel, O. (2022). Occurrences of Niobium and Tantalum Mineralization in Mongolia. Minerals, 12(12), 1529. https://doi.org/10.3390/min12121529