Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Pre-Processing
2.2. Machine Learning Model
- The retained input data are randomly divided into a training set and a test set;
- The RF model is created, followed by setting the hyperparameters used to control the learning process [26];
- Multiple decision trees are created while training the model with the training set through each node;
- The final result was estimated by averaging the results from all trees generated.
3. Results
3.1. Data Processing and PCC Analysis
3.2. RF and 5-5 Nested Cross-Validation
- Ntree = 5–1000 (set in multiples of five intervals);
- Nfeature = 2–9;
- Random state_T = 0–10;
- Random state_M = 0–10.
- Ntree = 10–500 (set in multiples of ten intervals);
- Nfeature = 2–9;
- Random state_T = 0–5;
- Random state_M = 0–5.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- SKB. Design and Production of the KBS-3 Repository; SKB Technical Report TR-10-12; SKB: Stockholm, Sweden, 2010. [Google Scholar]
- Sugiura, Y.; Suyama, T.; Tachi, Y. Development of JAEA Sorption Database (JAEA-SDB): Update of Sorption/QA Data in FY2019; Japan Atomic Energy Agency: Ibaraki, Japan, 2020. [CrossRef]
- Fernandes, M.M.; Vér, N.; Baeyens, B. Predicting the uptake of Cs, Co, Ni, Eu, Th and U on argillaceous rocks using sorption models for illite. Appl. Geochem. 2015, 59, 189–199. [Google Scholar] [CrossRef]
- Shalev-Shwartz, S.; Ben-David, S. Understanding Machine Learning: From Theory to Algorithms; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zhang, W.; Li, Y.; Wu, C.; Li, H.; Goh, A.T.C.; Lin, H. Prediction of lining response for twin tunnels construction in anisotropic clays using machine learning techniques. Undergr. Space 2022, 7, 122–133. [Google Scholar] [CrossRef]
- Nafouanti, M.B.; Li, J.; Mustapha, N.A.; Uwamungu, P.; AL-Alimi, D. Prediction on the Fluoride Contamination in Groundwater at the Datong Basin, Northern China: Comparison of Random Forest, Logistic Regression and Artificial Neural Network. Appl. Geochem. 2021, 132, 105054. [Google Scholar] [CrossRef]
- Cipullo, S.; Nawar, S.; Mouazen, A.M.; Campo-Moreno, P.; Coulon, F. Predicting bioavailability change of complex chemical mixtures in contaminated soils using visible and near-infrared spectroscopy and random forest regression. Sci. Rep. 2019, 9, 4492. [Google Scholar] [CrossRef] [PubMed]
- Jooshaki, M.; Nad, A.; Michaux, S. A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical Data in Mining and Mineral Industry. Minerals 2021, 11, 816. [Google Scholar] [CrossRef]
- Zhou, Z.H. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar] [CrossRef]
- Ray, S. A Quick Review of Machine Learning Algorithms. In Proceedings of the 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, India, 14–16 February 2019; pp. 35–39. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Stone, M. Cross-validatory choice and assessment of statistical predictions. J. R. Stat. Soc. Ser. B Methodol. 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Krstajic, D.; Buturovic, L.J.; Leahy, D.E.; Thomas, S. Cross-validation pitfalls when selecting and assessing regression and classification models. J. Cheminform. 2014, 6, 10. [Google Scholar] [CrossRef]
- Varma, S.; Simon, R. Bias in error estimation when using cross-validation for model selection. BMC Bioinform. 2006, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Louppe, G.; Wehenkel, L.; Sutera, A.; Geurts, P. Understanding variable importances in forests of randomized trees. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 5–10 December 2013; pp. 431–439. [Google Scholar]
- Chen, T.; Sedighi, M.; Jivkov, A.; Seetharam, S. A model for hydraulic conductivity of compacted bentonite–inclusion of microstructure effects under confined wetting. Géotechnique 2020, 71, 1071–1084. [Google Scholar] [CrossRef]
- Physical and Chemical Data of Source Clays. Available online: https://www.clays.org/sourceclays_data/ (accessed on 1 May 2022).
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Little, E.J., Jr.; Jones, M.M. A complete table of electronegativities. J. Chem. Educ. 1960, 37, 231–233. [Google Scholar] [CrossRef]
- Millero, F.J.; Feistel, R.; Wright, D.G.; McDougall, T.J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I Oceanogr. Res. Pap. 2008, 55, 50–72. [Google Scholar] [CrossRef]
- Torstenfelt, B.; Andersson, K.; Allard, B. Sorption of Sr and Cs on Rocks and Minerals; National Council for Radioactive Waste: Stockholm, Sweden, 1981. [Google Scholar]
- Torstenfelt, B.; Kipatsi, H.; Andersson, K.; Allard, B.; Olofsson, U. Transport of actinides through a bentonite backfill. In Scientific Basis for Nuclear Waste Management-V; Lutze, W., Ed.; Elsevier: New York, NY, USA, 1982; pp. 659–668. [Google Scholar] [CrossRef]
- Mateus, M.V.; Araújo, L.S.; Leopoldino, A.B.; Ferreira, M.d.S.; Ferreira, D.C.; da Luz, M.S.; Gonçalves, J.C.S.I. Molecular interactions and modeling of anionic surfactant effect on oxygen transfer in a cylindrical reactor. Environ. Eng. Sci. 2019, 36, 180–185. [Google Scholar] [CrossRef]
- Kitamura, A.; Tomura, T.; Sato, H.; Nakayama, M. Sorption Behavior of Cesium onto Bentonite and Sedimentary Rocks in Saline Groundwaters; Japan Atomic Energy Agency: Ibaraki, Japan, 2008.
- Benesty, J.; Chen, J.; Huang, Y.; Cohen, I. Pearson correlation coefficient. In Noise Reduction in Speech Processing; Springer: Berlin/Heidelberg, Germany, 2009; Volume 2, pp. 1–4. ISBN 978-3-642-00295-3. [Google Scholar]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020, 415, 295–316. [Google Scholar] [CrossRef]
- Bernard, S.; Heutte, L.; Adam, S. Influence of hyperparameters on random forest accuracy. In Multiple Classifier Systems; Benediktsson, J.A., Kittler, J., Roli, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5519, pp. 171–180. [Google Scholar] [CrossRef] [Green Version]
- Renaud, O.; Victoria-Feser, M.P. A robust coefficient of determination for regression. J. Stat. Plan. Inference 2010, 140, 1852–1862. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Sklearn.ensemble.RandomForestRegressor. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html (accessed on 1 May 2022).
- Nested Cross-Validation. Available online: https://inria.github.io/scikit-learn-mooc/python_scripts/cross_validation_nested.html (accessed on 1 May 2022).
- Gao, X.; Wang, L.; Yao, L. Porosity Prediction of Ceramic Matrix Composites Based on Random Forest. In Proceedings of the 3rd International Symposium on Application of Materials Science and Energy Materials (SAMSE 2019), Shanghai, China, 30–31 December 2019. [Google Scholar] [CrossRef]
- Hou, N.; Zhang, X.; Zhang, W.; Wei, Y.; Jia, K.; Yao, Y.; Jiang, B.; Cheng, J. Estimation of surface downward shortwave radiation over China from Himawari-8 AHI data based on random Forest. Remote Sens. 2020, 12, 181. [Google Scholar] [CrossRef]
- Shreyas, R.; Akshata, D.M.; Mahanand, B.S.; Shagun, B.; Abhishek, C.M. Predicting popularity of online articles using Random Forest regression. In Proceedings of the Second International Conference on Cognitive Computing and Information Processing, Mysuru, India, 12–13 August 2016. [Google Scholar] [CrossRef]
- Rosipal, R.; Krämer, N. Overview and recent advances in partial least squares. In Subspace, Latent Structure and Feature Selection Techniques; Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J., Eds.; Springer: New York, NY, USA, 2006; pp. 34–51. [Google Scholar] [CrossRef]
- de Jong, S. SIMPLS: An alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 1993, 18, 251–263. [Google Scholar] [CrossRef]
Amount of Input Data | Maximum R2 Value | RMSE |
---|---|---|
100 | 0.7777 | 0.5807 |
200 | 0.7805 | 0.5520 |
400 | 0.8212 | 0.5522 |
700 | 0.8972 | 0.3543 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, D.-H.; Lee, J.-Y. Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method. Minerals 2022, 12, 1207. https://doi.org/10.3390/min12101207
Kim D-H, Lee J-Y. Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method. Minerals. 2022; 12(10):1207. https://doi.org/10.3390/min12101207
Chicago/Turabian StyleKim, Do-Hyeon, and Jun-Yeop Lee. 2022. "Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method" Minerals 12, no. 10: 1207. https://doi.org/10.3390/min12101207
APA StyleKim, D.-H., & Lee, J.-Y. (2022). Prediction of the Adsorption Behaviors of Radionuclides onto Bentonites Using a Machine Learning Method. Minerals, 12(10), 1207. https://doi.org/10.3390/min12101207