Experimental Study on the Mechanical Behavior of Coal under Triaxial Dynamic Compression
Abstract
:1. Introduction
2. Experiment
2.1. Sample Preparation
2.2. Triaxial Split Hopkinson Press Bar System
2.3. Experimental Scheme
2.4. Experimental Procedures
3. Results and Discussion
3.1. Stress Equilibrium
3.2. Stress–Strain Behavior
3.3. The Relationship between Failure Strain and Dynamic Compressive Strength with Various Loading Rates
3.4. Energy Dissipation
3.5. Prospects
- (1)
- The in-situ stress in coal mines increases with overburden depth. The SHPB test system could be modified to achieve larger loading rates. Thus, the dynamic mechanical behavior of coal at depths higher than 600 m might be simulated.
- (2)
- In this study, the depth gradient for the two groups of tests was 100 m. It is suggested to reduce the depth gradient and divide the loading rate into multiple groups for experimental studies. This could quantify the complete fragmentation energy for coal at different depths.
4. Conclusions
- (1)
- With increasing depth, the effect of the confining stress on the dynamic compression strength of coal is more profound than the axial stress under the same loading rate. The results indicated that the horizontal principal stress plays a main role in the mechanical properties of coal, more than vertical in-situ stress, which are mutually verified. The monitoring of horizontal principal stress should be focused on in the prediction of dynamic incidents.
- (2)
- The dynamic compression strength and failure strain of coal gradually increase with depth. Meanwhile, the energy dissipation and energy density per unit volume of coal also increase with depth. Higher critical energy is required for dynamic incidents in a deep mine. Thus, the damage degree of the accident might be drastic in a case of a dynamic disaster at the depth of deep mining.
- (3)
- During the dynamic loading of coal under in-situ stress conditions, the relationship between the failure strains of incompletely and completely fragmented specimens and the loading rate is variable. The coal could be completely fragmented and the failure strain is decreasing at high loading rates. Furthermore, the failure strain decreases suddenly when the loading rate is high enough. However, the failure strain of incompletely fragmented coal increases with the loading rate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- National Bureau of Statistical of China. China Statistical Yearbook 2020; China Statistical Press: Beijing, China, 2021.
- Xie, H.; Li, C.; He, Z.; Li, C.; Lu, Y.; Zhang, R.; Gao, M.; Gao, F. Experimental study on rock mechanical behavior retaining the in situ geological conditions at different depths. Int. J. Rock Mech. Min. Sci. 2021, 138, 104548. [Google Scholar] [CrossRef]
- Xue, S.; Yuan, L.; Xie, J.; Wang, Y. Advances in gas content based on outburst control technology in Huainan, China. Int. J. Min. Sci. Technol. 2014, 24, 385–389. [Google Scholar] [CrossRef]
- Dou, L.M.; Cai-Ping, L.U.; Zong-Long, M.U.; Gao, M.S. Prevention and forecasting of rock burst hazards in coal mines. Min. Sci. Technol. 2009, 19, 585–591. [Google Scholar] [CrossRef]
- Xue, S.; Zheng, C.; Zheng, X.; Jiang, B.; Wang, Z. Experimental determination of the outburst threshold value of energy strength in coal mines for mining safety. Process. Saf. Environ. Prot. 2020, 138, 263–268. [Google Scholar] [CrossRef]
- Zhang, Z.; Xie, H.; Zhang, R.; Zhang, Z.; Gao, M.; Jia, Z.; Xie, J. Deformation Damage and Energy Evolution Characteristics of Coal at Different Depths. Rock Mech. Rock Eng. 2019, 52, 1491–1503. [Google Scholar] [CrossRef]
- Wang, E.; Feng, J.; Kong, X.; Liu, X.; Shen, R. A hard roof fracture source model and its far-field seismic impact by stress wave. J. Min. Saf. Eng. 2018, 35, 787–794. [Google Scholar]
- Qi, Q.; Pan, Y.; Shu, L.; Li, H.; Jiang, D.; Zhao, S.; Zou, Y.; Pan, J.; Wang, K.; Li, H. Theory and technical framework of prevention and control with different sources in multi-scales for coal and rock dynamic disasters in deep mining of coal mines. J. China Coal Soc. 2018, 43, 1801–1810. [Google Scholar]
- Li, C.; Wang, Q.; Lyu, P. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test. J. Geophys. Eng. 2016, 13, 391–398. [Google Scholar] [CrossRef]
- Feng, J.; Wang, E.; Shen, R.; Chen, L.; Li, X.; Xu, Z. Investigation on energy dissipation and its mechanism of coal under dynamic loads. Geomech. Eng. 2016, 11, 657–670. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, G.-F.; Jiang, Y.; Elsworth, D.; Huang, Y. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. Int. J. Coal Geol. 2014, 132, 81–93. [Google Scholar] [CrossRef]
- Liu, X.; Dai, F.; Zhang, R.; Liu, J. Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity. Environ. Earth Sci. 2015, 73, 5933–5949. [Google Scholar] [CrossRef]
- Xia, K.; Yao, W. Dynamic rock tests using split Hopkinson (Kolsky) bar system—A review. J. Rock Mech. Geotech. Eng. 2015, 7, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.B.; Zhao, J. A Review of Dynamic Experimental Techniques and Mechanical Behaviour of Rock Materials. Rock Mech. Rock Eng. 2014, 47, 1411–1478. [Google Scholar] [CrossRef]
- Kolsky. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. B 1949, 62, 676. [Google Scholar] [CrossRef]
- Dai, F.; Huang, S.; Xia, K.; Tan, Z. Some Fundamental Issues in Dynamic Compression and Tension Tests of Rocks Using Split Hopkinson Pressure Bar. Rock Mech. Rock Eng. 2010, 43, 657–666. [Google Scholar] [CrossRef]
- Klepaczko, J.R.; Hsu, T.R.; Bassim, M.N. Elastic and pseudoviscous properties of coal under quasi-static and impact loadings. Can. Geotech. J. 2011, 21, 203–212. [Google Scholar] [CrossRef]
- Fakhimi, A.; Azhdari, P.; Kimberley, J. Physical and numerical evaluation of rock strength in Split Hopkinson Pressure Bar testing. Comput. Geotech. 2018, 102, 1–11. [Google Scholar] [CrossRef]
- Feng, J.; Wang, E.; Huang, Q.; Ding, H.; Zhang, X. Experimental and numerical study of failure behavior and mechanism of coal under dynamic compressive loads. Int. J. Min. Sci. Technol. 2020, 30, 613–621. [Google Scholar] [CrossRef]
- Zhao, Y.; Gong, S.; Zhang, C.; Zhang, Z.; Jiang, Y. FRACTAL CHARACTERISTICS OF CRACK PROPAGATION IN COAL UNDER IMPACT LOADING. Fractals-Complex Geom. Patterns Scaling Nat. Soc. 2018, 26, 1840014. [Google Scholar] [CrossRef]
- Xue, S.; Wang, Y.; Xie, J.; Wang, G. A coupled approach to simulate initiation of outbursts of coal and gas—model development. Int. J. Coal Geol. 2011, 86, 222–230. [Google Scholar] [CrossRef]
- Kang, H.-P.; Lin, J.; Yan, L.-X.; Zhang, X.; Wu, Y.-Z.; Si, L.-P. Study on characteristics of underground in-situ stress distribution in Shanxi coal mining fields. Chin. J. Geophys.-Chin. Ed. 2009, 52, 1782–1792. [Google Scholar] [CrossRef]
- Lu, J.; Yin, G.; Deng, B.; Zhang, W.; Li, M.; Chai, X.; Liu, C.; Liu, Y. Permeability characteristics of layered composite coal-rock under true triaxial stress conditions. J. Nat. Gas Sci. Eng. 2019, 66, 60–76. [Google Scholar] [CrossRef]
- Skipochka, S.; Krukovskyi, O.; Palamarchuk, T.; Prokhorets, L. On the methodology for considering scale effect of rock strength. Min. Miner. Depos. 2020, 14, 24–30. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Lok, T.-S.; Hong, L.; Yin, T. Innovative testing technique of rock subjected to coupled static and dynamic loads. Int. J. Rock Mech. Min. Sci. 2008, 45, 739–748. [Google Scholar] [CrossRef]
- Feng, J.; Wang, E.; Chen, X.; Ding, H. Energy dissipation rate: An indicator of coal deformation and failure under static and dynamic compressive loads. Int. J. Min. Sci. Technol. 2018, 28, 397–406. [Google Scholar] [CrossRef]
- Xie, H.; Zhu, J.; Zhou, T.; Zhao, J. Novel Three-dimensional Rock Dynamic Tests Using the True Triaxial Electromagnetic Hopkinson Bar System. Rock Mech. Rock Eng. 2021, 54, 2079–2086. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, Q.B.; Wu, G.; Li, J.C.; Zhao, J. Dynamic Mechanical and Fracture Behaviour of Sandstone Under Multiaxial Loads Using a Triaxial Hopkinson Bar. Rock Mech. Rock Eng. 2019, 52, 2175–2195. [Google Scholar] [CrossRef]
- Kong, X.; Wang, E.; Li, S.; Lin, H.; Zhang, Z.; Ju, Y. Dynamic mechanical characteristics and fracture mechanism of gas-bearing coal based on SHPB experiments. Theor. Appl. Fract. Mech. 2020, 105, 102395. [Google Scholar] [CrossRef]
- Kong, X.; Li, S.; Wang, E.; Ji, P.; Wang, X.; Shuang, H.; Zhou, Y. Dynamics behaviour of gas-bearing coal subjected to SHPB tests. Compos. Struct. 2021, 256, 113088. [Google Scholar] [CrossRef]
- Kong, X.; Wang, E.; Hu, S.; Shen, R.; Li, X.; Zhan, T. Fractal characteristics and acoustic emission of coal containing methane in triaxial compression failure. J. Appl. Geophys. 2016, 124, 139–147. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Xia, K.; Li, X.B.; Li, H.B.; Ma, G.W.; Zhao, J.; Zhou, Z.L.; Dai, F. Suggested Methods for Determining the Dynamic Strength Parameters and Mode-I Fracture Toughness of Rock Materials. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Ulusay, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 35–44. [Google Scholar]
- Brown, E.T.; Hoek, E. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 211–215. [Google Scholar] [CrossRef]
- Kang, H.-P.; Zhang, X.; Si, L.-P.; Wu, Y.; Gao, F. In-situ stress measurements and stress distribution characteristics in underground coal mines in China. Eng. Geol. 2010, 116, 333–345. [Google Scholar] [CrossRef]
- Hobbs, D. The strength and the stress-strain characteristics of coal in triaxial compression. J. Geol. 1964, 72, 214–231. [Google Scholar] [CrossRef]
- Huang, B.; Liu, J. The effect of loading rate on the behavior of samples composed of coal and rock. Int. J. Rock Mech. Min. Sci. 2013, 61, 23–30. [Google Scholar] [CrossRef]
- Abdiev, A.; Mambetova, R.; Abdiev, A.; Abdiev, S. Studying a correlation between characteristics of rock and their conditions. Min. Miner. Depos. 2020, 14, 87–100. [Google Scholar] [CrossRef]
- Mohr, D.; Gary, G.; Lundberg, B. Evaluation of stress–strain curve estimates in dynamic experiments. Int. J. Impact Eng. 2010, 37, 161–169. [Google Scholar] [CrossRef]
- Carreira, D.J.; Chu, K.H. Stress-strain relationship for plain concrete in compression. J. Am. Concr. Inst. 1985, 82, 797–804. [Google Scholar]
- Roylance, D. Stress-Strain Curves; Massachusetts Institute of Technology Study: Cambridge, MA, USA, 2001. [Google Scholar]
- Zhao, J.; Li, H.B.; Wu, M.B.; Li, T.J. Dynamic uniaxial compression tests on a granite. Int. J. Rock Mech. Min. Sci. 1999, 36, 273–277. [Google Scholar] [CrossRef]
- Masuda, K.; Mizutani, H.; Yamada, I. Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. J. Phys. Earth 1987, 35, 37–66. [Google Scholar] [CrossRef]
- Thomas, R.J.; Sorensen, A.D. Review of strain rate effects for UHPC in tension. Constr. Build. Mater. 2017, 153, 846–856. [Google Scholar]
- Jaeger, J.C.; Cook, N.G.; Zimmerman, R. Fundamentals of Rock Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Lundberg, B. A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 187–197. [Google Scholar] [CrossRef]
Specimen | Uniaxial Compressive Strength/MPa | Density/(g/cm3) | Wave Speed /(m/s) | Poisson’s Ratio | Elastic Modulus /GPa | Failure Strain |
---|---|---|---|---|---|---|
Raw coal | 37.21 | 1.30 | 1338.63 | 0.20 | 1.79 | 0.024 |
No. | Depth/m | Axial Stress /MPa | Confining Stress/MPa | Loading Rate | Dynamic Compression Strength/MPa | Failure Strain | Whether Completely Fragmented | Energy Consumption/J | Energy Dissipation Rate | Energy Density /J/cm3 |
---|---|---|---|---|---|---|---|---|---|---|
1-1 | 100 | 2.7 | 5.04 | 957 | 83.09 | 0.04 | √ | 222.81 | 0.49 | 4.54 |
1-2 | 100 | 2.7 | 5.04 | 987 | 95.11 | 0.028 | √ | 285.43 | 0.55 | 5.82 |
1-3 | 100 | 2.7 | 5.04 | 1327 | 110.42 | 0.027 | √ | 332.79 | 0.58 | 6.78 |
2-1 | 200 | 5.4 | 6.93 | 648 | 81.99 | 0.04 | × | 154.65 | 0.47 | 3.15 |
2-2 | 200 | 5.4 | 6.93 | 935 | 89.65 | 0.046 | √ | 317.36 | 0.45 | 6.47 |
2-3 | 200 | 5.4 | 6.93 | 1276 | 118.07 | 0.038 | √ | 376.84 | 0.46 | 7.68 |
3-1 | 300 | 8.1 | 8.82 | 747 | 89.65 | 0.033 | × | 187.45 | 0.52 | 3.82 |
3-2 | 300 | 8.1 | 8.82 | 1205 | 108.23 | 0.048 | × | 435.46 | 0.47 | 8.88 |
3-3 | 300 | 8.1 | 8.82 | 1212 | 114.79 | 0.056 | × | 456.36 | 0.47 | 9.30 |
4-1 | 400 | 10.8 | 10.71 | 723 | 94.57 | 0.043 | × | 303.26 | 0.65 | 6.18 |
4-2 | 400 | 10.8 | 10.71 | 952 | 101.67 | 0.051 | × | 329.83 | 0.47 | 6.72 |
4-3 | 400 | 10.8 | 10.71 | 1039 | 110.42 | 0.016 | √ | 425.92 | 0.45 | 8.68 |
5-1 | 500 | 13.5 | 12.60 | 958 | 104.95 | 0.033 | × | 203.21 | 0.49 | 4.14 |
5-2 | 500 | 13.5 | 12.60 | 1022 | 111.51 | 0.052 | × | 326.80 | 0.45 | 6.66 |
5-3 | 500 | 13.5 | 12.60 | 1313 | 102.76 | 0.011 | √ | 390.28 | 0.37 | 7.95 |
6-1 | 600 | 16.2 | 14.49 | 1129 | 113.70 | 0.047 | × | 372.58 | 0.50 | 7.59 |
6-2 | 600 | 16.2 | 14.49 | 1332 | 135.56 | 0.054 | × | 406.21 | 0.45 | 8.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, C.; Xue, S.; Han, Y. Experimental Study on the Mechanical Behavior of Coal under Triaxial Dynamic Compression. Minerals 2022, 12, 1206. https://doi.org/10.3390/min12101206
Cheng C, Xue S, Han Y. Experimental Study on the Mechanical Behavior of Coal under Triaxial Dynamic Compression. Minerals. 2022; 12(10):1206. https://doi.org/10.3390/min12101206
Chicago/Turabian StyleCheng, Chunhui, Sheng Xue, and Yidan Han. 2022. "Experimental Study on the Mechanical Behavior of Coal under Triaxial Dynamic Compression" Minerals 12, no. 10: 1206. https://doi.org/10.3390/min12101206
APA StyleCheng, C., Xue, S., & Han, Y. (2022). Experimental Study on the Mechanical Behavior of Coal under Triaxial Dynamic Compression. Minerals, 12(10), 1206. https://doi.org/10.3390/min12101206