Geochemical Compositions and Detrital Minerals of Stream Sediments around the Zijinshan Copper-Gold Orefield and Their Implications
Abstract
:1. Introduction
2. Orefield Description, Sampling, and Analysis
2.1. Orefield Description
2.2. Sample Collection and Analysis
2.2.1. Geochemical Analysis of Sediments
2.2.2. EMP and LA-ICP-MS Analysis of Iron Oxides in Stream Sediments
2.2.3. Isotope Analysis of Detrital Zircons in Stream Sediments
3. Results
3.1. Element Contents of Stream Sediments
3.2. Ore-Forming Element Contents of Iron Oxides
3.3. Detrital Zircon U–Pb Ages
3.4. Detrital Zircon Hf Isotopic Compositions
4. Discussion
4.1. Elemental Sediments Composition
4.2. Implication of Detrital Zircon U–Pb Ages
4.3. Implications of Detrital Zircon Hf Isotope Compositions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birke, M.; Rauch, U.; Stummeyer, J. How robust are geochemical patterns? A comparison of low and high sample density geochemical mapping in Germany. J. Geochem. Explor. 2015, 154, 105–128. [Google Scholar] [CrossRef]
- Liu, D.W. Development and significance of geochemical blocks. Geochimica 2002, 31, 539–548, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liu, X.M.; Wang, X.Q.; Xu, S.F.; Chi, Q.H. Relationship of copper geochemical blocks and metallogenic provinces in South China Continent. Earth Sci. Front. 2012, 19, 59–69, (In Chinese with English Abstract). [Google Scholar]
- Xie, X.J.; Liu, D.W.; Xiang, Y.C.; Yan, G.S. Geochemical blocks-Development of concept and methodology. Geol. China 2002, 29, 225–233, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xie, X.J. Surficial and Superimposed Geochemicai Exploration for Giant Ore Deposits; Queen’s University Press: Kingston, ON, Canada, 1995; pp. 475–485. [Google Scholar]
- Wang, S.H. Study of Metallogenic Forecast with Large Scale in Zijinshan Copper-Gold Ore Concentrated Area-Zijinshan Mining Field and Its Periphery; Chinese Academy of Geological Sciences: Beijing, China, 2007; (In Chinese with English Abstract). [Google Scholar]
- Wang, S.H.; Zhang, G.L.; Pei, R.F. Copper Geochemical Block Characteristics and Ore Potential of the Zijinshan Ore Concentration Area. Acta Geosci. Sin. 2010, 31, 90–94, (In Chinese with English Abstract). [Google Scholar]
- Huang, C.P.; Liu, Q.S.; Zhang, K.Y. Geophysical and Geochemical Characters and Ore-finding Pattern of the Zijinshan Copper-Gold Orefield, in Shanghang County, Fujian Province. Geol. Fujian 1999, 18, 189–206, (In Chinese with English Abstract). [Google Scholar]
- Wang, S.H. Characteristics of Gold Geochemical Anomalies and Ore Potential Forecasting of the Zijinshan Area of Extensive Gold Mineralization. Geotecton. Metallog. 2011, 35, 156–160, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lizuka, T.; Hirata, T.; Komiya, T.; Rino, S.; Katayama, I.; Motoki, A.; Maruyama, S. U–Pb and Lu-HF isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology 2005, 33, 485–488. [Google Scholar] [CrossRef]
- Rino, S.; Komiya, T.; Windley, B.F.; Katayama, I.; Motoki, A.; Hirata, T. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Phys. Earth Planet. Inter. 2004, 146, 369–394. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Yin, A.; Wang, X.F. Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull. 2003, 115, 881–896. [Google Scholar] [CrossRef]
- Najman, Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 2006, 74, 1–72. [Google Scholar] [CrossRef]
- Ibanez-Mejia, M.; Pullen, A.; Pepper, M.; Urbani, F.; Ghoshal, G. Use and abuse of detrital zircon U–Pb geochronology—A case from the Río Orinoco delta, eastern Venezuela. Geology 2018, 46, 1019–1022. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G. U–Pb ages of detrital zircons in Jurassic eolian and associated sandstones of the Colorado Plateau: Evidence for transcontinental dispersal and intraregional recycling of sediment. Geol. Soc. Am. Bull. 2009, 121, 408–433. [Google Scholar] [CrossRef] [Green Version]
- Bhuiyan, M.; Rahman, M.; Dampare, S.B.; Suzuki, S. Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry. J. Geochem. Explor. 2011, 111, 113–137. [Google Scholar] [CrossRef]
- Zhang, B.M.; Wang, X.Q.; Ye, R.; Zhou, J.; Liu, H.L.; Liu, D.S.; Han, Z.X.; Lin, X.; Wang, Z.K. Geochemical exploration for concealed deposits at the periphery of the Zijinshan copper–gold mine, southeastern China. J. Geochem. Explor. 2015, 157, 184–193. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, G.G.; Cheng, B.L.; Peng, R.M.; Jiang, W.; Chen, J.S.; Fang, L.M. Geology and metallogenic mechanism of the Zhongjia Tin polymetallic in Longyan, Fujian. Geol. Explor. Non-Ferr. Met. 1999, 8, 129–135, (In Chinese with English Abstract). [Google Scholar]
- Liang, Q.L. The Metallogenic Mechanism of Zijinshan Cu-Au Deposit, Fujian; Chinese Academy of Geological Sciences: Beijing, China, 2013; (In Chinese with English Abstract). [Google Scholar]
- Zhou, Y.Q. Primary Discussion of Au Secondary Enrichment regularity in Zijinshan Deposit. Guizhou Geol. 2015, 32, 119–125, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Pan, T.W.; Yuan, Y.; Lv, Y.; Shi, W.Q. The Early-Cretaceous tectonic evolution and the spatial-temporal framework of magmatism-mineralization in Zijinshan ore-field, Fujian Province. J. Geomech. 2019, 25, 61–76, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Huang, W.T.; Hu, C.J.; Li, J.; Liang, H.Y.; Wu, J.; Wang, C.L.; Bao, Z.W.; Chen, Y.J.; Wang, X.Z. LA-ICP-MS U–Pb zircon age and characteristics of ore-bearing magmatic rocks in Luobling Copper-molybdenum porphyry deposit in Zijinshan Orefield, Fujian Province. Acta Miner. Sin. 2011, 31, 592–593. (In Chinese) [Google Scholar] [CrossRef]
- Wu, L.Y.; Hu, R.Z.; Li, X.F.; Liu, S.A.; Tang, Y.W.; Tang, Y.Y. Copper isotopic compositions of the Zijinshan high-sulfidation epithermal Cu-Au deposit, South China: Implications for deposit origin. Ore Geol. Rev. 2017, 83, 191–199. [Google Scholar] [CrossRef]
- Li, B.; Jiang, S.Y. Genesis of the giant Zijinshan epithermal Cu-Au and Luoboling porphyry Cu-Mo deposits in the Zijinshan ore district, Fujian Province, SE China: A multi-isotope and trace element investigation. Ore Geol. Rev. 2017, 88, 753–767. [Google Scholar] [CrossRef]
- Zhao, X.L.; Mao, J.R.; Chen, R.; Xu, N.N. SHRIMP zircon dating of the Zijinshan pluton in southwestern Fujian and its implications. Geol. China 2008, 35, 590–597, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Huang, W.T.; Li, J.; Liang, H.Y.; Wang, C.L.; Lin, S.P.; Wang, X.Z. Zircon LA-ICP-MS U–Pb ages and highly oxidized features of magma associated with Luoboling porphyry Cu-Mo deposit in Zijinshan ore field, Fujian Province. Acta Petrol. Sin. 2013, 29, 283–293, (In Chinese with English Abstract). [Google Scholar]
- Liang, Q.L.; Jiang, S.H.; Wang, S.H.; Li, C.; Zeng, F.G. Re-Os Dating of Molybdenite from the Luoboling Porphyry Cu-Mo Deposit in the Zijinshan Ore Field of Fujian Province and Its Geological Significance. Acta Geol. Sin. 2012, 86, 1113–1118, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhou, S.; Chen, H.S. Geochronology and Geological Significance of the Zijinshan Copper-Gold Deposit. Bull. Minera. Petrol. Geochem. 1996, 15, 216–219, (In Chinese with English Abstract). [Google Scholar]
- Zhong, J.; Chen, Y.J.; Chen, J.; Qi, J.P.; Dai, M.C. Geology and fluid inclusion geochemistry of the Zijinshan high-sulfidation epithermal Cu-Au deposit, Fujian Province, SE China: Implication for deep exploration targeting. J. Geochem. Explor. 2018, 184, 49–65. [Google Scholar] [CrossRef]
- Jiang, S.H.; Bagas, L.; Liang, Q.L. Pyrite Re-Os isotope systematics at the Zijinshan deposit of SW Fujian, China: Constraints on the timing and source of Cu-Au mineralization. Ore Geol. Rev. 2017, 80, 612–622. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, Y.J.; Qi, J.P.; Jing, C.; Dai, M.C.; Li, J. Geology, fluid inclusion and stable isotope study of the Yueyang Ag-Au-Cu deposit, Zijinshan orefield, Fujian Province, China. Ore Geol. Rev. 2017, 86, 254–270. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, Y.J.; Pirajno, F.; Chen, J.; Li, J.; Qi, J.P.; Li, N. Geology, geochronology, fluid inclusion and H–O isotope geochemistry of the Luoboling Porphyry Cu–Mo deposit, Zijinshan Orefield, Fujian Province, China. Ore Geol. Rev. 2014, 57, 61–77. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhong, H.; Mao, W.; Bai, Z.J.; Xue, K. Molybdenite Re-Os dating and LA-ICP-MS trace element study of sulfide minerals from the Zijinshan high-sulfidation epithermal Cu-Au deposit, Fujian Province, China. Ore Geol. Rev. 2020, 118, 103363. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Gao, S.; Günther, D.; Xu, J.; Gao, C.G.; Chen, H.H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.S.; Gao, S.; Hu, Z.C.; Gao, C.G.; Zong, K.Q.; Wang, D.B. Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U–Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. J. Petrol. 2010, 51, 537–571. [Google Scholar] [CrossRef]
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Hu, Z.C.; Gao, S.; Liu, Y.S.; Hu, S.H.; Chen, H.H.; Yuan, H.L. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas. J. Anal. Atom. Spectrom. 2008, 23, 1093–1101. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex, a Geochronological Toolkit for Microsoft Excel, Version 3.00; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; Volume 4, pp. 1–70. [Google Scholar]
- Hu, Z.C.; Liu, Y.S.; Gao, S.; Liu, W.G.; Zhang, W.; Tong, X.R.; Lin, L.; Zong, K.Q.; Li, M.; Chen, H.H.; et al. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS. J. Anal. Atom. Spectrom. 2012, 27, 1391–1399. [Google Scholar] [CrossRef]
- Blichert-Toft, J.; Chauvel, C.; Albarède, F. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contrib. Mineral. Petrol. 1997, 127, 248–260. [Google Scholar] [CrossRef]
- McCulloch, M.T.; Rosman, K.J.R.; De Laeter, J.R. The isotopic and elemental abundance of ytterbium in meteorites and terrestrial samples. Geochim. Cosmochim. Acta 1977, 41, 1703–1707. [Google Scholar] [CrossRef]
- Palme, H.; O’Neill, H.; St, C. Cosmochemical Estimates of Mantle Composition. In Treatise Geochem, 2nd ed.; Turekian, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 2, pp. 1–39. [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Chi, Z.; Ni, P.; Liao, J.F.; Fan, M.S.; Liu, Z.; Zhang, X. The comparative study of the geochemistry of Wenwu porphyry and Luoboling porphyry in Zijinshan ore-field, Fujian province. J. Nanjing Univ. 2018, 54, 398–412, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Spencer, C.J.; Kirkland, C.L.; Taylor, R.J.M. Strategies towards statistically robust interpretations in situ U–Pb zircon geochronology. Geosci. Front. 2016, 7, 581–589. [Google Scholar] [CrossRef] [Green Version]
- Gehrels, G. Detrital zircon U–Pb geochronology: Current methods and new opportunities. In Tectonics of Sedimentary Basins: Recent Advances; Busby, C., Azor, A., Eds.; Blackwell Publishing: Oxford, UK, 2014; pp. 45–62. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of zircon textures. Rev. Miner. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Miner. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Vermeesch, P. On the visualization of detrital age distributions. Chem. Geol. 2012, 312–313, 190–194. [Google Scholar] [CrossRef]
- Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. U–Pb detrital zircon ages from Gorgoglione Flysch sandstones in Southern Apennines (Italy) as provenance indicators. Geol. Mag. 2021, 58, 859–874. [Google Scholar] [CrossRef]
- Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. Preliminary U–Pb Detrital Zircon Ages from Tufiti di Tusa Formation (Lucanian Apennines, Southern Italy): Evidence of Rupelian Volcaniclastic Supply. Minerals 2020, 10, 786. [Google Scholar] [CrossRef]
- Fornelli, A.; Festa, V.; Micheletti, F.; Spiess, R.; Tursi, F. Building an Orogen: Review of U–Pb Zircon Ages from the Calabria–Peloritani Terrane to Constrain the Timing of the Southern Variscan Belt. Minerals 2020, 10, 944. [Google Scholar] [CrossRef]
- Xie, Q.F.; Cai, Y.F.; Dong, Y.P.; Li, D.P. Zircon Geochronology and Hf Isotope Compositions of Biotite Granite in Southeast Ore Section of Zijinshan Ore Field, Fujian Province. Earth Sci. 2019, 44, 1311–1326, (In Chinese with English Abstract). [Google Scholar]
- Li, B.; Zhao, K.D.; Zhang, Q.; Xu, Y.M.; Zhu, Z.Y. Petrogenesis and geochemical characteristics of the Zijinshan granitic complex from Fujian Province, South China. Acta Petrol. Sin. 2015, 31, 811–828, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Q.; Wu, X.B.; Yang, M.; Qian, M.P.; Diao, Q.; Meng, F.S. Petrogenesis and Tectonic Implications of the Jintonghu Granitic Porphyry in Zijinshan Orefield, Fujian Province. Geoscience 2019, 33, 1025–1035, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise Geochem; Turekian, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar] [CrossRef]
Zijinshan Copper-Gold Deposit | Luoboling Copper-Molybdenum Deposit | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Sample ID | ZJS01 | ZJS02-1 | ZJS05 | ZJS09 | ZJS12 | LBL03 | LBL04 | LBL06 | LBL07 | LBL09 |
SiO2 | 70.92 | 85.32 | 85.54 | 86.51 | 87.43 | 83.69 | 86.46 | 86.42 | 86.48 | 84.4 |
Al2O3 | 12.97 | 6.43 | 7.63 | 5.35 | 5.32 | 8.07 | 5.67 | 6.17 | 5.79 | 6.98 |
TFe2O3 | 4.23 | 1.44 | 1.19 | 1.97 | 0.93 | 2.41 | 1.61 | 1.65 | 1.72 | 2.21 |
CaO | 2.13 | 0.31 | 0.16 | 0.12 | 0.14 | 0.17 | 0.25 | 0.16 | 0.24 | 0.29 |
MgO | 0.52 | 0.35 | 0.2 | 0.19 | 0.2 | 0.33 | 0.32 | 0.24 | 0.24 | 0.53 |
Na2O | 0.16 | 0.55 | 0.17 | 0.42 | 0.46 | 0.2 | 0.25 | 0.2 | 0.29 | 0.35 |
K2O | 1.75 | 1.78 | 1.71 | 2.06 | 2.37 | 1.77 | 1.8 | 1.7 | 1.82 | 2.4 |
Ba | 355.8 | 294.4 | 143.2 | 291.4 | 324.3 | 268.8 | 251.8 | 277.3 | 304.2 | 308.5 |
Cr | 49.9 | 13.6 | 7.2 | 8.6 | 9.8 | 22.3 | 14.9 | 18.7 | 17.6 | 19.5 |
Zn | 71.0 | 28.5 | 72.7 | 30.7 | 23.9 | 71.9 | 50.9 | 45.9 | 76.4 | 62.8 |
Pb | 34.6 | 32.8 | 72.5 | 21.4 | 19.8 | 48.9 | 42.9 | 34.8 | 40.1 | 32.8 |
Rb | 101.7 | 82.4 | 105.3 | 102.6 | 112.2 | 97.4 | 92.5 | 87.5 | 98.5 | 125.6 |
Sr | 32.5 | 49.7 | 53.6 | 42.5 | 40.4 | 30.6 | 36.0 | 21.0 | 29.2 | 39.4 |
Zr | 191.7 | 80.8 | 65.7 | 88.8 | 55.6 | 134.7 | 66.0 | 73.5 | 69.0 | 101.0 |
Nb | 16.0 | 11.5 | 19.8 | 23.9 | 10.8 | 14.3 | 14.2 | 12.3 | 16.5 | 17.6 |
Ag | 84 | 122 | 430 | 101 | 67 | 103 | 130 | 96 | 175 | 111 |
Sn | 4.8 | 2.5 | 6.3 | 8.7 | 2.2 | 3.1 | 2.7 | 2.5 | 4.2 | 4.4 |
Cu | 26.3 | 13.2 | 36.2 | 11.6 | 8.6 | 32.2 | 23.8 | 15.5 | 14.9 | 18.3 |
Li | 34.6 | 19.2 | 19.4 | 17.9 | 19.7 | 31.7 | 19.3 | 15.4 | 20.9 | 21.3 |
Mn | 650.9 | 249.3 | 307.7 | 321.1 | 353.4 | 770.0 | 444.6 | 1073.8 | 1613.7 | 2291.1 |
Ni | 17.6 | 5.1 | 2.2 | 2.6 | 3.2 | 7.7 | 4.5 | 6.7 | 6.3 | 7.6 |
V | 58.5 | 21.5 | 15.1 | 30.8 | 17.0 | 36.9 | 24.2 | 24.5 | 29.7 | 32.7 |
Co | 9.2 | 4.2 | 2.8 | 3.9 | 2.3 | 6.4 | 4.6 | 7.4 | 5.3 | 6.4 |
Cd | 403 | 107 | 539 | 62 | 143 | 444 | 174 | 373 | 514 | 428 |
Th | 15.1 | 6.1 | 9.4 | 7.7 | 4.6 | 9.3 | 5.7 | 5.8 | 7.6 | 7.7 |
U | 3.43 | 1.66 | 3.51 | 3.00 | 1.61 | 2.97 | 1.87 | 1.92 | 2.11 | 2.26 |
In | 0.061 | 0.036 | 0.144 | 0.031 | 0.021 | 0.045 | 0.044 | 0.029 | 0.045 | 0.033 |
Cs | 7.5 | 3.0 | 3.4 | 3.8 | 3.8 | 4.6 | 3.0 | 3.1 | 3.2 | 9.8 |
Hf | 6.30 | 3.60 | 5.57 | 3.83 | 2.82 | 3.74 | 3.23 | 2.98 | 3.66 | 5.04 |
Ta | 1.42 | 1.07 | 2.68 | 2.80 | 1.14 | 1.16 | 1.45 | 1.19 | 1.65 | 1.72 |
As | 16.9 | 5.4 | 15.9 | 3.1 | 2.1 | 7.3 | 5.0 | 3.1 | 5.4 | 4.1 |
Sb | 0.76 | 0.51 | 2.50 | 0.46 | 0.33 | 0.43 | 0.43 | 0.40 | 0.52 | 0.48 |
Bi | 0.78 | 0.94 | 5.54 | 0.71 | 0.32 | 2.99 | 1.06 | 0.70 | 0.84 | 0.58 |
Mo | 1.31 | 1.17 | 3.61 | 0.52 | 0.69 | 4.72 | 2.95 | 1.51 | 1.62 | 1.40 |
W | 3.38 | 2.22 | 4.59 | 2.07 | 1.77 | 6.47 | 3.54 | 3.17 | 3.85 | 2.86 |
Au | 2.7 | 2.0 | 20.0 | 3.3 | 1.3 | 1.6 | 1.9 | 1.1 | 2.9 | 3.4 |
La | 34.35 | 16.04 | 11.58 | 14.70 | 10.61 | 20.20 | 12.85 | 15.36 | 19.83 | 23.09 |
Ce | 75.51 | 27.33 | 22.50 | 29.70 | 22.14 | 37.50 | 23.36 | 34.11 | 38.06 | 40.22 |
Pr | 6.89 | 3.38 | 2.63 | 3.23 | 2.29 | 4.37 | 2.64 | 3.28 | 3.99 | 4.75 |
Nd | 26.33 | 12.48 | 10.01 | 12.07 | 8.63 | 16.09 | 9.83 | 12.49 | 14.52 | 17.46 |
Sm | 5.06 | 2.28 | 2.31 | 2.23 | 1.65 | 3.02 | 1.86 | 2.45 | 2.71 | 3.20 |
Eu | 0.89 | 0.43 | 0.29 | 0.41 | 0.37 | 0.54 | 0.38 | 0.44 | 0.48 | 0.55 |
Gd | 4.74 | 2.17 | 2.24 | 2.50 | 1.63 | 2.92 | 1.90 | 2.36 | 2.78 | 3.11 |
Tb | 0.81 | 0.37 | 0.47 | 0.50 | 0.28 | 0.48 | 0.33 | 0.40 | 0.48 | 0.54 |
Dy | 4.41 | 1.99 | 2.85 | 2.26 | 1.50 | 2.58 | 1.90 | 2.28 | 2.72 | 2.97 |
Ho | 0.92 | 0.42 | 0.63 | 0.49 | 0.33 | 0.55 | 0.41 | 0.48 | 0.58 | 0.60 |
Er | 2.84 | 1.34 | 2.06 | 1.67 | 1.08 | 1.73 | 1.37 | 1.58 | 1.81 | 1.90 |
Tm | 0.43 | 0.20 | 0.34 | 0.40 | 0.17 | 0.26 | 0.21 | 0.23 | 0.27 | 0.27 |
Yb | 2.76 | 1.34 | 2.21 | 1.80 | 1.08 | 1.68 | 1.38 | 1.55 | 1.74 | 1.74 |
Lu | 0.40 | 0.20 | 0.33 | 0.50 | 0.16 | 0.24 | 0.20 | 0.22 | 0.24 | 0.26 |
Sc | 7.26 | 0.97 | 0.72 | 1.20 | 0.53 | 2.82 | 1.34 | 1.53 | 1.19 | 2.11 |
Y | 25.01 | 10.49 | 17.55 | 12.87 | 8.28 | 14.28 | 11.16 | 12.48 | 15.08 | 15.99 |
Stream Sediments | Magmatic Rocks in the Orefield * | |||
---|---|---|---|---|
Mean | Range | Mean | Range | |
Zijinshan copper-gold deposit | ||||
∑REE/(ppm) | 99.06 | 60.18–191.35 | 121.22 | 40.41–284.20 |
∑Er-Lu/(ppm) | 4.26 | 2.48–6.43 | 5.67 | 1.21–12.88 |
δEu | 0.54 | 0.39–0.68 | 0.42 | 0.29–0.65 |
(La/Yb)N | 6.48 | 3.56–8.45 | 10.73 | 2.62–48.19 |
(La/Gd)N | 5.41 | 4.34–6.20 | 8.82 | 2.94–19.50 |
(Gd/Yb)N | 1.17 | 0.82–1.39 | 1.15 | 0.60–2.55 |
Luoboling copper-molybdenum deposit | ||||
∑REE/(ppm) | 97.57 | 69.8–116.65 | 149.31 | 126.60–171.60 |
∑Er-Lu/(ppm) | 3.78 | 3.16–4.18 | 3.68 | 3.21–4.32 |
δEu | 0.55 | 0.52–0.62 | 0.98 | 0.91–1.03 |
(La/Yb)N | 7.60 | 6.33–9.00 | 12.94 | 9.32–18.93 |
(La/Gd)N | 5.83 | 5.46–6.23 | 7.73 | 5.95–10.78 |
(Gd/Yb)N | 1.30 | 1.11–1.44 | 1.68 | 1.38–1.86 |
Sample ID | Survey Point | MgO | Na2O | FeO | CaO | Al2O3 | SiO2 | TiO2 | K2O | MnO | P2O5 | CuO | CdO | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LBL01 | 1 | / | / | 88.51 | / | 0.08 | 0.02 | 0.05 | / | 0.08 | / | 0.03 | / | 88.77 |
2 | / | / | 88.13 | / | 0.06 | 0.06 | 0.09 | / | 0.04 | 0.03 | / | / | 88.41 | |
3 | / | / | 88.74 | / | 0.06 | 0.04 | 0.04 | / | 0.07 | / | / | 0.04 | 88.99 | |
4 | 0.04 | 0.02 | 77.37 | / | 1.25 | 1.10 | / | 0.02 | / | 0.81 | / | / | 80.61 | |
5 | 0.06 | 0.08 | 66.41 | / | 3.49 | 1.13 | 0.20 | / | / | 0.95 | 0.26 | / | 72.58 | |
LBL11 | 1 | 0.03 | / | 58.34 | 0.07 | 9.39 | 2.68 | / | / | 0.02 | 0.39 | 0.08 | / | 71.00 |
2 | 0.04 | / | 56.95 | 0.15 | 10.58 | 2.64 | / | 0.19 | / | 0.98 | 0.08 | 0.05 | 71.66 | |
3 | 0.06 | / | 56.99 | / | 10.65 | 2.46 | 0.04 | 0.05 | 0.04 | 1.24 | 0.04 | / | 71.57 | |
ZJS02-1 | 1 | 0.40 | / | 81.69 | / | 1.11 | 0.12 | 4.26 | / | 0.98 | 0.05 | / | / | 88.61 |
2 | 0.73 | 0.05 | 82.05 | / | 1.25 | 0.05 | 3.07 | / | 1.14 | / | / | / | 88.34 | |
3 | 0.31 | 0.04 | 82.64 | / | 1.19 | 0.22 | 2.66 | / | 1.18 | / | 0.03 | / | 88.27 | |
ZJS07 | 1 | 0.05 | / | 68.25 | / | 0.17 | 2.56 | / | / | 0.32 | 0.04 | / | / | 71.39 |
2 | 0.02 | 0.10 | 68.14 | / | 0.10 | 3.29 | / | / | 0.34 | 0.11 | / | / | 72.10 | |
ZJS13 | 1 | / | / | 83.61 | / | 0.42 | 0.10 | 1.41 | / | 0.03 | / | 0.05 | / | 85.62 |
2 | / | / | 84.31 | / | 0.32 | 0.24 | 2.04 | / | 0.04 | / | / | 0.04 | 86.99 | |
3 | / | / | 88.53 | / | 0.15 | / | 0.22 | / | 0.02 | 0.06 | / | / | 88.98 | |
4 | / | / | 88.75 | / | 0.20 | 0.06 | 0.21 | / | 0.10 | / | / | / | 89.32 | |
5 | / | / | 88.99 | / | 0.18 | 0.05 | 0.21 | / | 0.13 | / | 0.05 | 0.06 | 89.67 |
Sample ID | Survey Point | Cu | Zn | In | Sn | Sb | Mo | Pb | Bi | Cd |
---|---|---|---|---|---|---|---|---|---|---|
Limit of detection | 2.70 | 3.39 | 0.02 | 0.28 | 0.15 | 0.27 | 0.05 | 0.03 | 2.29 | |
ZJS02 | 1-1 | n.d. 1 | 1810.19 | 0.39 | 12.59 | 11.09 | 3.30 | 408.73 | 1.65 | n.d. |
1-2 | n.d. | 1693.58 | 0.38 | 14.28 | 17.02 | 3.82 | 772.59 | 2.20 | n.d. | |
1-3 | 12.39 | 1952.28 | 0.89 | 27.31 | 21.59 | 3.14 | 496.23 | 2.89 | n.d. | |
ZJS07 | 1-1 | 125.69 | 103.07 | 0.23 | n.d. | 0.30 | 7.64 | 31.24 | n.d. | n.d. |
1-2 | 93.41 | 103.66 | 0.28 | n.d. | 1.53 | 20.65 | 48.25 | n.d. | n.d. | |
ZJS13 | 1-1 | 16.76 | 364.25 | 0.23 | 10.63 | 19.74 | 1.93 | 112.43 | 0.32 | n.d. |
1-2 | 15.18 | 306.61 | 0.26 | 10.43 | 19.91 | 1.98 | 124.89 | 0.40 | n.d. | |
2-1 | n.d. | 290.74 | n.d. | 21.56 | n.d. | 8.60 | 1.48 | 0.08 | n.d. | |
2-2 | n.d. | 263.79 | n.d. | 7.64 | n.d. | 9.42 | n.d. | n.d. | 10.17 | |
2-3 | n.d. | 247.98 | n.d. | 12.83 | n.d. | 5.47 | 1.52 | 0.09 | n.d. | |
LBL11 | 1-1 | 268.09 | 424.77 | 0.65 | 1.35 | 12.49 | 3.10 | 30.54 | 0.63 | n.d. |
1-2 | 85.59 | n.d. | 0.37 | 3.14 | n.d. | n.d. | n.d. | n.d. | 9.64 | |
1-3 | 263.80 | 376.14 | 0.65 | 1.69 | 14.13 | 8.34 | 22.93 | 2.27 | 3.51 | |
-1 | 22.64 | 34.14 | n.d. | 7.07 | n.d. | 3.23 | 25.66 | 0.63 | n.d. | |
LBL01 | 1-2 | 85.98 | 67.40 | 0.10 | 7.12 | 0.57 | 3.74 | 368.72 | 6.87 | n.d. |
-1-3 | 190.90 | 44.23 | 0.09 | 1.94 | n.d. | 5.43 | 122.06 | 1.03 | n.d. | |
2-1 | 1035.56 | n.d. | 0.18 | n.d. | 0.93 | 119.56 | 377.44 | 2.89 | n.d. | |
2-2 | 1425.31 | 19.84 | 0.23 | 0.37 | 1.22 | 143.33 | 300.91 | 3.76 | n.d. | |
Average | 280.10 | 506.42 | 0.35 | 9.33 | 10.04 | 20.75 | 202.85 | 1.84 | 7.77 | |
Average for stream sediments in the orefield | 20.06 | 53.47 | 0.049 | 4.14 | 0.68 | 1.05 | 38.06 | 1.45 | 0.319 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Hou, Q.; Xiao, Y. Geochemical Compositions and Detrital Minerals of Stream Sediments around the Zijinshan Copper-Gold Orefield and Their Implications. Minerals 2022, 12, 32. https://doi.org/10.3390/min12010032
Li Y, Hou Q, Xiao Y. Geochemical Compositions and Detrital Minerals of Stream Sediments around the Zijinshan Copper-Gold Orefield and Their Implications. Minerals. 2022; 12(1):32. https://doi.org/10.3390/min12010032
Chicago/Turabian StyleLi, Yuntao, Qingye Hou, and Yu Xiao. 2022. "Geochemical Compositions and Detrital Minerals of Stream Sediments around the Zijinshan Copper-Gold Orefield and Their Implications" Minerals 12, no. 1: 32. https://doi.org/10.3390/min12010032
APA StyleLi, Y., Hou, Q., & Xiao, Y. (2022). Geochemical Compositions and Detrital Minerals of Stream Sediments around the Zijinshan Copper-Gold Orefield and Their Implications. Minerals, 12(1), 32. https://doi.org/10.3390/min12010032