Geochemical State of Wilga River Environment in Kraków (Poland)—Historical Aspects and Existing Issues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Water Samples Analysis
2.3. Suspended Particulate Matter (SPM) Samples Analysis
2.4. Sediment Samples Analysis
2.5. Quality Assurance and Quality Control
3. Results and Discussion
3.1. The Impact of Waste Piles of Former “Solvay” Kraków Soda Works on the Wilga River Water and Associated Groundwater
3.2. The Impact of Traffic and Construction Works of “Łagiewnicka Route” on the Wilga River Environment
3.3. The Long-Term Impact of Chemical Industry on the Wilga River Sediments
4. Conclusions
- A significant and gradual improvement of the geochemical condition of the Wilga River has been observed over the last several decades, which is attributed mainly to the termination or the significant reduction of industrial activity within the river’s catchment area.
- The impact of soda waste on the environment of the Wilga River is significant, but a reduction of the leaching of ions from the waste ponds into the river and a gradual improvement of its general condition has been observed, which is also confirmed by the observations of other authors.
- No noticeable impact of road transport on the river’s environment has been observed, even though it flows in the vicinity of major and heavily used roads. No negative impact of the construction of the “Łagiewnicka Route” on its condition has been observed either.
- The environment of the Wilga is still quite heavily contaminated and it has to be classified as a polluted river, but the level of this pollution has decreased and its character has changed significantly. In the past, the critical parameter was the concentration of metals, especially chromium, currently it is higher mineralization, biogenic substances and sanitary condition.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mokarram, M.; Saber, A.; Sheykhi, V. Effects of heavy metal contamination on river water quality due to release of industrial effluents. J. Clean. Prod. 2020, 227, 123380. [Google Scholar] [CrossRef]
- Szczepaniak-Wnuk, I.; Górska-Kostrubiec, B.; Dytłow, S.; Szwarczewski, P.; Kwapuliński, P.; Karasiński, J. Assessment of heavy metal pollution in Vistula river (Poland) sediments by using magnetic methods. Environ. Sci. Pollut. Res. 2020, 27, 24129–24144. [Google Scholar] [CrossRef]
- Biswas, A.K.; Tortajda, C. Water quality management: A globally neglected issue. Int. J. Water Resour. Dev. 2019, 35, 913–916. [Google Scholar] [CrossRef]
- Tsakiris, G. The status of the European waters in 2015: A review. Environ. Process. 2015, 2, 543–557. [Google Scholar] [CrossRef] [Green Version]
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; van de Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posthuma, L.; Zijp, M.C.; De Zwart, D.; Van de Meent, D.; Globevnik, L.; Koprivsek, M.; Focks, A.; Van Gils, J.; Birk, S. Chemical pollution imposes limitations to the ecological status of European surface waters. Sci. Rep. 2020, 10, 14825. [Google Scholar] [CrossRef]
- Calatrava, J.; Martínez-Granados, D. Water buybacks to recover depleted aquifers in south-east Spain. Int. J. Water Resour. Dev. 2019, 35, 977–998. [Google Scholar] [CrossRef] [Green Version]
- Vieira, J.; Fonseca, A.; Vilar, V.J.P.; Boaventura, R.A.R.; Botelho, C.M.S. Water quality in Lis river, Portugal. Environ. Monit. Assess. 2012, 184, 7125–7140. [Google Scholar] [CrossRef]
- Hartfiel, L.; Soupir, M.; Kanwar, R.S. Malta’s Water Scarcity Challenges: Past, Present, and Future Mitigation Strategies for Sustainable Water Supplies. Sustainability 2020, 12, 9835. [Google Scholar] [CrossRef]
- Kanowik, W.; Kowalik, T. Usability of water in Wilga River with respect to its possible storage in small retention reservoir. Acta Sci. Pol. Form. Circumiectus 2008, 7, 23–31. (In Polish) [Google Scholar]
- Kubiak-Wójcicka, K.; Machula, S. Influence of Climate Changes on the State of Water Resources in Poland and Their Usage. Geosciences 2020, 10, 312. [Google Scholar] [CrossRef]
- Strzebońska, M.; Gruszecka-Kosowska, A.; Kostka, A. Chemistry and Microbiology of Urban Roof Runoff in Kraków, Poland with Ecological and Health Risk Implications. Appl. Sci. 2020, 10, 8554. [Google Scholar] [CrossRef]
- Szalińska, E. Water Quality and Management Changes Over the History of Poland. Bull. Environ. Contam. Toxicol. 2018, 100, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Piniewski, M.; Szcześniak, M.; Kundzewicz, Z.W.; Mezghani, A.; Hov, Ø. Changes in low and high flows in the Vistula and the Odra basins: Model projections in the European-scale context. Hydrol. Process. 2017, 31, 2210–2225. [Google Scholar] [CrossRef]
- Helios-Rybicka, E.; Strzebońska, M. Distribution and Chemical Forms of Heavy Metals in the Flood 1997 Sediments of the Upper and Middle Odra River and its Tributaries, Poland. Acta Hydrochim. Hydrobiol. 1999, 27, 331–337. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Szamałek, K.; Kowalczak, P. The Great Flood of 1997 in Poland. Hydrolog. Sci. J. 1999, 44, 855–870. [Google Scholar] [CrossRef]
- Adamiec, E.; Helios-Rybicka, E. Changes of heavy metals concentrations in suspended matter of the Odra River after the flood in November 1997. In Proceedings of the Symposium Programme of Fifth International Symposium and Exhibition on Environmental Contamination in Central and Eastern Europe, Prague, Czech Republic, 12–14 September 2000; p. 220. [Google Scholar]
- Dobrowolski, A.; Czarnecka, H.; Ostrowski, J.; Zaniewska, M. Floods in Poland from 1946 to 2001—Origin, territorial extent and frequency. In Proceedings of the Conference “Risks Caused by the Geodynamic Phenomena in Europe”, Wysowa, Poland, 20–22 May 2004; pp. 69–76. [Google Scholar]
- Bissolli, P.; Friedrich, K.; Rapp, J.; Ziese, M. Flooding in eastern central Europe in May 2010—Reasons, evolution and climatological assessment. Weather 2011, 66, 147–153. [Google Scholar] [CrossRef]
- Strzebońska, M.; Kostka, A.; Helios-Rybicka, E.; Jarosz-Krzemińska, E. Effect of Flooding on Heavy Metals Contamination of Vistula Floodplain Sediments in Cracow; Historical Mining and Smelting as the Most Important Source of Pollution. Pol. J. Environ. Stud. 2015, 24, 1317–1326. [Google Scholar] [CrossRef]
- Kowalczak, P.; Kundzewicz, Z.W. Water-related conflicts in urban areas in Poland. Hydrolog. Sci. J. 2011, 54, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Pociask-Karteczka, J. Anthropogenic Changes in the Water Conditions in Cracow (East-Central Europe) Since the Second World War. J. Environ. Hydrol. 1994, 2, 14–23. [Google Scholar]
- Pociask-Karteczka, J. Changes in the water conditions in the area of Kraków. Zesz. Nauk. Uniw. Jagiellońskiego MCXLIV Pr. Geogr. 1994, 96, 1–38. (In Polish) [Google Scholar]
- Kostka, A.; Leśniak, A. Natural and Anthropogenic Origin of Metals in Lacustrine Sediments; Assessment and Consequences—A Case Study of Wigry Lake (Poland). Minerals 2021, 11, 158. [Google Scholar] [CrossRef]
- Förstner, U. Sediment-associated contaminants—An overview of scientific bases for developing remedial options. Hydrobiologia 1987, 149, 221–246. [Google Scholar] [CrossRef]
- Dinis, P.; Garzanti, E.; Vermeesch, P.; Huvi, J. Climatic zonation and weathering control on sediment composition (Angola). Chem. Geol. 2017, 467, 110–121. [Google Scholar] [CrossRef] [Green Version]
- Hamid, A.; Bhat, S.U.; Jehangir, A. Local determinants influencing stream water quality. Appl. Water Sci. 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Owens, P.N. Conceptual Models and Budgets for Sediment Management at the River Basin Scale. J. Soils Sediments 2005, 5, 201–212. [Google Scholar] [CrossRef]
- Burton, G.A., Jr. Sediment quality criteria in use around the world. Limnology 2002, 3, 65–75. [Google Scholar] [CrossRef]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background—Can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Kostka, A.; Leśniak, A. Multiparameter assessment of select metal distribution in lacustrine sediments. J. Soils Sediments 2021, 21, 512–529. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Kostka, A.; Leśniak, A. Spatial and geochemical aspects of heavy metal distribution in lacustrine sediments, using the example of Lake Wigry (Poland). Chemosphere 2020, 240, 124879. [Google Scholar] [CrossRef] [PubMed]
- Meybeck, M. Heavy metal contamination in rivers across the globe: An indicator of complex interactions between societies and catchments. In Proceedings of the H04, IAHS-IAPSO-IASPEI Assembly, Gothenburg, Sweden, 22–26 July 2013; pp. 3–16. [Google Scholar]
- Macklin, M.G.; Klimek, K. Dispersal, storage and transformation of metal contaminated alluvium in the upper Vistula basin, southwest Poland. Appl. Geogr. 1992, 12, 7–30. [Google Scholar] [CrossRef]
- Helios-Rybicka, E. Impact of mining and metallurgical industries on the environment in Poland. Appl. Geochem. 1996, 11, 3–9. [Google Scholar] [CrossRef]
- Bojakowska, I.; Sokołowska, G.; Gliwicz, T. Heavy metals in recent alluvium of the Odra River. Geol. Q. 1997, 41, 395–404. [Google Scholar]
- Adamiec, E.; Helios-Rybicka, E. Distribution of Pollutants in the Odra River System Part IV. Heavy Metal Distribution in Water of the Upper and Middle Odra River, 1998–2000. Pol. J. Environ. Stud. 2002, 11, 669–673. [Google Scholar]
- Helios-Rybicka, E.; Adamiec, E.; Aleksander-Kwaterczak, U. Distribution of trace metals in the Odra River system: Water—Suspended matter—Sediments. Limnologica 2005, 35, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Gielar, A.; Helios-Rybicka, E.; Möller, S.; Einax, J.W. Multivariate analysis of sediment data from the upper and middle Odra River (Poland). Appl. Geochem. 2012, 27, 1540–1545. [Google Scholar] [CrossRef]
- Ciszewski. D. Flood-related changes in heavy metal concentrations within sediments of the Biała Przemsza River. Geomorphology 2001, 40, 205–218. [Google Scholar] [CrossRef]
- Ciszewski, D. Pollution of Mala Panew River sediments by heavy metal: Part I. Effect of changes in river bed morphology. Pol. J. Environ. Stud. 2004, 13, 589–595. [Google Scholar]
- Budek, L.; Wardas, M.; Kijas, A.; Rembalska, R. Contamination with heavy metals of the Serafa River environment (Cracow area)—Comparison of the situation before and after the flood of 1997. Geologia 2004, 30, 175–189. (In Polish) [Google Scholar]
- Aleksander-Kwaterczak, U.; Wardas, M.; Fuk, A.; Dudek, K. A threat to the Mała Panew River ecosystem due to Cd and Zn above standard concentrations in its bottom sediments. Pol. J. Environ. Stud. 2006, 15, 631–634. [Google Scholar]
- Pawlikowski, M.; Szalińska, E.; Wardas, M.; Dominik, J. Chromium Originating from Tanneries in River Sediments: A Preliminary Investigation from the Upper Dunajec River (Poland). Pol. J. Environ. Stud. 2006, 15, 885–894. [Google Scholar]
- Aleksander-Kwaterczak, U.; Helios-Rybicka, E. Contaminated sediments as a potential source of Zn, Pb, and Cd for a river system in the historical metalliferous ore mining and smelting industry area of South Poland. J. Soils Sediments 2009, 9, 13–22. [Google Scholar] [CrossRef]
- Ciszewski, D.; Kubsik, U.; Aleksander-Kwaterczak, U. Long-term dispersal of heavy metals in a catchment affected by historic lead and zinc mining. J. Soils Sediments 2012, 12, 1445–1462. [Google Scholar] [CrossRef] [Green Version]
- Ciszewski, D.; Aleksander-Kwaterczak, U.; Pociecha, A.; Szarek-Gwiazda, E.; Waloszek, A.; Wilk-Woźniak, E. Small effects of a large sediment contamination with heavy metals on aquatic organisms in the vicinity of an abandoned lead and zinc mine. Environ. Monit. Assess. 2013, 185, 9825–9842. [Google Scholar] [CrossRef] [Green Version]
- Ciszewski, D.; Bijata, P. Reconstruction of post-mining attenuation of heavy metal pollution in sediment of the Zlatý Potok, Eastern Sudety Mts. Carpath. J. Earth Environ. Sci. 2014, 9, 109–120. [Google Scholar]
- Szarek-Gwiazda, E.; Michailova, P.; Ilkova, J.; Kownacki, A.; Ciszewski, D.; Aleksander-Kwaterczak, U. The effect of long-term contamination by heavy metals on community and genome alterations of Chironomidae (Diptera) in a stream with mine drainage water (southern Poland). Oceanol. Hydrobiol. Stud. 2014, 42, 460–469. [Google Scholar] [CrossRef]
- Aleksander-Kwaterczak, U.; Ciszewski, D. Pollutant dispersal in groundwater and sediments of gaining and losing river reaches affected by metal mining. Environ. Earth Sci. 2016, 75, 95. [Google Scholar] [CrossRef] [Green Version]
- Jabłońska-Czapla, M.; Nocoń, K.; Szopa, S.; Łyko, A. Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Environ. Monit. Assess. 2016, 188, 262. [Google Scholar] [CrossRef] [Green Version]
- Strzebońska, M.; Jarosz-Krzemińska, E.; Adamiec, E. Assessing Historical Mining and Smelting Effects on Heavy Metal Pollution of River Systems over Span of Two Decades. Water Air Soil Pollut. 2017, 228, 141. [Google Scholar] [CrossRef] [Green Version]
- Aleksander-Kwaterczak, U.; Plenzler, D. Contamination of small urban watercourses on the example of a stream in Krakow (Poland). Environ. Earth Sci. 2019, 78, 530. [Google Scholar] [CrossRef] [Green Version]
- Ciszewski, D. The past and prognosis of mining cessation impact on river sediment pollution. J. Soils Sediments 2019, 19, 393–402. [Google Scholar] [CrossRef] [Green Version]
- Wardas, M.; Budek, L.; Helios-Rybicka, E. Variability of heavy metals content in bottom sediments of the Wilga River, a tributary of the Vistula River (Kraków area, Poland). Appl. Geochem. 1996, 11, 197–202. [Google Scholar] [CrossRef]
- Wardas, M.; Łojan, E.; Kuboń, E. Changes in land development in the valley of the Wilga River within Cracow area and their influence on the water environment. Geologia 2004, 30, 215–231. (In Polish) [Google Scholar]
- Wardas-Lasoń, M. The Influence of Sewage System on the Functioning and Quality of Krakow’s Watercourses. J. Geol. Res. 2014, 2014, 910982. [Google Scholar] [CrossRef] [Green Version]
- Trasa Łagiewnicka, S.A. Available online: https://3obwodnica.krakow.pl (accessed on 8 June 2021).
- Gliniak, M.; Pawul, M.; Sobczyk, W. Impact of the transport and postindustrial landfills of Cracow Soda Works “Solvay” on the status and quality of water in Wilga River in Krakow. Logistyka 2014, 4, 4295–4302. (In Polish) [Google Scholar]
- Sutkowska, K.; Teper, L. Impact of Solvay Waste Alkalinity on the Leaching of Heavy Metals in A 100 Year-Old Landfill. In Proceedings of the World Congress on New Technologies (NewTech 2015), Barcelona, Spain, 15–17 July 2015; p. 169. [Google Scholar]
- Sroczyński, W.; Skrzypczak, R.; Syposz-Łuczak, B.; Wota, A. “Krakow Białe Morza”—Chosen problems of management and revitalization. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią PAN 2009, 76, 31–43. (In Polish) [Google Scholar]
- Hong, J.; Chen, W.; Wang, Y.; Xu, C.; Xu, X. Life cycle assessment of caustic soda production: A case study in China. J. Clean. Prod. 2014, 66, 113–120. [Google Scholar] [CrossRef]
- Glasby, G.P.; Szefer, P. Marine pollution in Gdansk Bay, Puck Bay and the Vistula Lagoon, Poland: An overview. Sci. Total Environ. 1998, 212, 49–57. [Google Scholar] [CrossRef]
- HELCOM. Hazardous substances in the Baltic Sea—An integrated thematic assessment of hazardous substances in the Baltic Sea. In Baltic Sea Environment Proceedings No. 120B; Helsinki Commission, Baltic Marine Environment Protection Commission: Helsinki, Finland, 2010; Available online: https://helcom.fi/media/publications/BSEP120B.pdf (accessed on 8 June 2021).
- Lehtonen, K.K.; Schiedek, D.; Köhler, A.; Lang, T.; Vuorinen, P.J.; Förlin, L.; Baršienė, J.; Pempkowiak, J.; Gercken, J. The BEEP project in the Baltic Sea: Overview of results and outline for a regional biological effects monitoring strategy. Mar. Pollut. Bull. 2006, 53, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Likus-Cieślik, J.; Pietrzykowski, M. The Influence of Sedimentation Ponds of the Former Soda “Solvay” Plant in Krakow on the Chemistry of the Wilga River. Sustainability 2021, 13, 993. [Google Scholar] [CrossRef]
- Łojan, E. Influence of Mineral Components on Geochemistry of Heavy Metals in Sediments of the Wilga River. Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland, 2008. (In Polish). [Google Scholar]
- Gliniak, M.; Sobczyk, W. Proposal of brownfield land development on the example of the landfills of former Soda Krakow Works “Solvay”. J. Ecol. Eng. 2016, 17, 96–100. [Google Scholar] [CrossRef] [Green Version]
- Krakowskie Zakłady Garbarskie, S.A. Available online: https://www.kzgsa.com/historia.php (accessed on 2 August 2021).
- International Organization for Standardization. ISO 10523. Water Quality—Determination of pH; International Organization for Standardization: Geneva, Switzerland, 2008. [Google Scholar]
- International Organization for Standardization. ISO 7888. Water Quality—Determination of Electrical Conductivity; International Organization for Standardization: Geneva, Switzerland, 1985. [Google Scholar]
- International Organization for Standardization. ISO 13395. Water Quality—Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection; International Organization for Standardization: Geneva, Switzerland, 1996. [Google Scholar]
- International Organization for Standardization. ISO 6878. Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method; International Organization for Standardization: Geneva, Switzerland, 2004. [Google Scholar]
- International Organization for Standardization. ISO 9297. Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method); International Organization for Standardization: Geneva, Switzerland, 1989. [Google Scholar]
- International Organization for Standardization. ISO 11885. Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES); International Organization for Standardization: Geneva, Switzerland, 2007. [Google Scholar]
- International Organization for Standardization. ISO 17294-2. Water Quality—Application of Inductively Coupled Plasma Mass Spectrometry (ICP-MS)—Part 2: Determination of Selected Elements Including Uranium Isotopes; International Organization for Standardization: Geneva, Switzerland, 2016. [Google Scholar]
- International Organization for Standardization. ISO 11466. Soil Quality—Extraction of Trace Elements Soluble in Aqua Regia; International Organization for Standardization: Geneva, Switzerland, 1995. [Google Scholar]
- International Organization for Standardization. ISO 11047. Soil Quality—Determination of Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel and Zinc—Flame and Electrothermal Atomic Absorption Spectrometric Methods; International Organization for Standardization: Geneva, Switzerland, 1998. [Google Scholar]
- Tighe, M.; Lockwood, P.; Wilson, S.; Lisle, L. Comparison of Digestion Methods for ICP-OES Analysis of a Wide Range of Analytes in Heavy Metal Contaminated Soil Samples with Specific Reference to Arsenic and Antimony. Commun. Soil Sci. Plant Anal. 2004, 35, 1369–1385. [Google Scholar] [CrossRef]
- Ramsey, M.H.; Ellison, S.L.R.; Rostron, P. (Eds.) Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide. In Measurement Uncertainty Arising from Sampling: A Guide to Methods and Approaches, 2nd ed.; Eurachem: Teddington, UK, 2019; Available online: https://www.eurachem.org/index.php/publications/guides/musamp (accessed on 10 June 2021).
- Kmiecik, E. Methodological Aspects of Assessing the Chemical Status of Groundwater; Wydawnictwa AGH: Kraków, Poland, 2011. (In Polish) [Google Scholar]
- Salminen, R. (Ed.) Geochemical Atlas of Europe; Geological Survey of Finland: Espoo, Finland, 2005; Available online: http://weppi.gtk.fi/publ/foregsatlas/index.php (accessed on 2 August 2021).
- Voivodeship Inspectorate of Environmental Protection in Poland. Available online: http://krakow.pios.gov.pl/stan-srodowiska/monitoring-wod/monitoring-wod-powierzchniowych (accessed on 2 June 2021).
- Ministry of Maritime Economy and Inland Water Navigation. Regulation of the Minister of Maritime Economy and Inland Water Navigation of 11 October 2019 on the Classification of the Ecological Condition, Ecological Potential and Chemical Condition and the Method of Classification of the Condition of Homogeneous Areas of Surface Waters, and on Environmental Quality Standards for Priority Substances; Item 2149; Journal of Laws: Warszawa, Poland, 2019. (In Polish) [Google Scholar]
- Chief Inspectorate of Environmental Protection in Poland. Available online: https://www.gios.gov.pl/pl/stan-srodowiska/monitoring-wod (accessed on 4 June 2021).
- Bojakowska, I.; Sokołowska, G. Geochemical purity classes of aquatic sediments. Prz. Geol. 1998, 46, 49–54. (In Polish) [Google Scholar]
- Gołub, A.; Piekutin, J. Effectiveness of Measures Taken to Protect Waters by Example of Soda Production Plant in Inowrocław. J. Ecol. Eng. 2018, 19, 144–149. [Google Scholar] [CrossRef]
- Kostka, A.; Strzebońska, M.; Sobczyk, M.; Zakrzewska, M.; Bochenek, A. The effect of de-icing roads with salt on the environment in Kraków, Poland. Geol. Geophys. Environ. 2019, 45, 195–205. [Google Scholar] [CrossRef]
- WHO. GEMS/Food-EURO Second Workshop on Reliable Evaluation of Low-Level Contamination of Food: Report on a Workshop in the Frame of GEMS Food-EURO; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Asses. 2016, 188, 369. [Google Scholar] [CrossRef] [Green Version]
- Adamiec, E. Chemical fractionation and mobility of traffic-related elements in road environments. Environ. Geochem. Health 2017, 39, 1457–1468. [Google Scholar] [CrossRef] [Green Version]
- Adamiec, E.; Jarosz-Krzemińska, E. Human health risk assessment associated with contaminants in the finest fraction of sidewalk dust collected in proximity to trafficked roads. Sci. Rep. 2019, 9, 16364. [Google Scholar] [CrossRef]
- Machowski, R.; Rzętała, M.A.; Rzętała, M.; Solarski, M. Anthropogenic enrichment of the chemical composition of bottom sediments of water bodies in the neighborhood of a non-ferrous metal smelter (Silesian Upland, Southern Poland). Sci. Rep. 2019, 9, 14445. [Google Scholar] [CrossRef]
- Rajchel, L. Mineral waters and acratopegs of Kraków. Prz. Geol. 1998, 46, 1139–1145. (In Polish) [Google Scholar]
- Parliament of Poland. Act of 27 April 2001—Environmental Protection Law; Item 627; Journal of Laws: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Parliament of Poland. Act of 7 June 2001 on the Communal Provision of Water and Communal Discharge of Sewage; Item 747; Journal of Laws: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Ministry of Construction. Regulation of the Minister of Construction of 14 July 2006 on the Methodology of Compliance with the Obligations of Industrial Waste Producers and the Conditions for the Discharge of Waste into Sewage Networks; Item 964; Journal of Laws: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Salomons, W.; Förstner, U. Metals in the Hydrocycle; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Selvaraj, K.; Mohan, V.R.; Szefer, P. Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: Geochemical and statistical approaches. Mar. Pollut. Bull. 2004, 49, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Tylmann, W.; Łysek, K.; Kinder, M.; Pempkowiak, J. Regional Pattern of Heavy Metal Content in Lake Sediments in Northeastern Poland. Water Air Soil Pollut. 2011, 216, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A.; Glińska-Lewczuk, K.; Cymes, I. Heavy Metal Contamination in the Surface Layer of Bottom Sediments in a Flow-Through Lake: A Case Study of Lake Symsar in Northern Poland. Water 2016, 8, 358. [Google Scholar] [CrossRef]
- Adamiec, E. Suspended Particulate Matter as an Indicator of Metals Pollution in Riverin System. Ecol. Chem. Eng. A 2013, 20, 31–38. [Google Scholar] [CrossRef]
- Jagoda, A.; Żukowski, W.; Dąbrowska, B. Caffeine in Cracow rivers. Czas. Tech. Sr. 2011, 108, 99–108. (In Polish) [Google Scholar]
- Greczek-Stachura, M.; Zagata-Leśnicka, P.; Ślęczka, M. Analysis of the coliform in the Wilga River (southern Poland). Ann. Univ. Paedag. Crac. Stud. Nat. 2016, 1, 190–195. [Google Scholar]
Parameter | Unit | Wilga 2019 (This Study) Min–Max (Mean) | Wilga 2021 (This Study) Min–Max (Mean) | Wilga 2017 [84] Mean * | Water of European Rivers [83] Min–Max (Mean) | Class I [85] ** | Class II [85] ** |
---|---|---|---|---|---|---|---|
pH | – | 7.0–7.5 (7.3) | 7.6–8.2 (8.1) | 7.8 | 2.2–9.8 (7.5) | 7.4–8.0 | 6.5–8.0 |
EC | µS/cm | 830–3600 (2264) | 970–2910 (2024) | 2834 | <500–1,710,000 (44,600) | ≤542 | ≤677 |
Cl− | mg/L | 61.8–896.4 (557.8) | 49.9–422.5 (261.2) | 922.5 | 0.14–4560 (33.3) | ≤29.9 | ≤44.8 |
N-NO3 | mg/L | 0.20–2.43 (1.48) | nd | 1.5 | <0.009–24.2 (2.05) | ≤2.0 | ≤5.0 |
P-PO4 | mg/L | 0.031–0.525 (0.165) | nd | 0.016 | nd | ≤0.065 | ≤0.101 |
SO4 | mg/L | nd | 61.6–119.6 (96.9) | 120.8 | 0.3–2420 (52.1) | ≤49.5 | ≤79.8 |
Al | mg/L | <LOQ–0.020 (0.013) | 0.082–0.510 (0.198) | nd | 0.0007–3.37 (0.0755) | ≤0.4 | ≤0.4 |
Ba | mg/L | 0.018–0.092 (0.064) | 0.029–0.048 (0.040) | 0.062 | 0.0002–0.436 (0.0354) | ≤0.5 | ≤0.5 |
Ca | mg/L | 66.0–318.3 (221.2) | 93.2–210.0 (157.9) | nd | 0.226–592 (55.2) | ≤80.1 | ≤89.5 |
Cd | mg/L | <LOQ–<LOQ (<LOQ) | <LOQ–<LOQ (<LOQ) | 0.03 | <0.000002–0.00125 (0.000026) | 0.00045 *** | 0.00045 *** |
Co | mg/L | <LOQ–<LOQ (<LOQ) | 0.00021–0.00034 (0.00026) | nd | 0.00001–0.0157 (0.000333) | ≤0.05 | ≤0.05 |
Cr | mg/L | <LOQ–<LOQ (<LOQ) | <LOQ–<LOQ (<LOQ) | nd | <0.00001–0.043 (0.000792) | ≤0.05 | ≤0.05 |
Cu | mg/L | <LOQ–<LOQ (<LOQ) | <LOQ–<LOQ (<LOQ) | <LOQ | 0.00008–0.0146 (0.00123) | ≤0.05 | ≤0.05 |
Fe | mg/L | 0.016–0.074 (0.039) | 0.179–0.787 (0.538) | nd | <0.001–4.82 (0.268) | – | – |
K | mg/L | 1.32–7.91 (4.42) | 3.64–5.53 (4.78) | nd | <0.01–182 (3.07) | – | – |
Li | mg/L | <LOQ–0.010 (0.009) | 0.005–0.010 (0.008) | nd | <0.000005–0.356 (0.00667) | – | – |
Mg | mg/L | 11.25–19.17 (14.88) | 9.48–13.76 (12.35) | nd | 0.048–230 (11.5) | ≤6.6 | ≤12.0 |
Mn | mg/L | <LOQ–<LOQ (<LOQ) | 0.092–0.219 (0.170) | nd | <0.00005–3.01 (0.0567) | – | – |
Na | mg/L | 32.6–304.5 (191.0) | 31.19–167.06 (101.43) | nd | 0.231–4030 (23.1) | – | – |
Ni | mg/L | <LOQ–<LOQ (<LOQ) | 0.0014–0.0020 (0.0016) | 2.0 | 0.00003–0.0246 (0.00243) | 0.034 *** | 0.034 *** |
Pb | mg/L | <LOQ–<LOQ (<LOQ) | <LOQ–0.00053 (0.00027) | nd | <0.000005–0.0106 (0.000224) | 0.014 *** | 0.014 *** |
Sr | mg/L | 0.36–1.35 (0.92) | 0.40–1.08 (0.71) | nd | 0.001-13.6 (0.327) | – | – |
Zn | mg/L | <LOQ–0.059 (0.036) | <LOQ–<LOQ (<LOQ) | 0.050 | 0.00009–0.31 (0.00601) | ≤1 | ≤1 |
Parameter [mg/kg] | 2019 (This Study) Wilga Suspended Particulate Matter Min–Max (Mean) | 2019 (This Study) Wilga Sediment (Fraction <20 μm) Min–Max (Mean) | 2021 (This Study) Wilga Sediment (Fraction <20 μm) Min–Max (Mean) | 2018 Vistula Sediment below Kraków (Fraction <2 mm) [86] * | Stream Sediments of European Rivers [83] Min–Max (Mean) | Geochemical Background for Aquatic Sediments in Poland [87] |
---|---|---|---|---|---|---|
Al | 8665–15,607 (11,827) | 13,717–21,085 (17,622) | 16,064–21,201 (17,750) | 1500 | nd | – |
Ba | 126–545 (277) | 109–328 (168) | 95–193 (146) | 19.0 | 4.0–3120 (117) | <52 |
Ca | 22,474–79,621 (50,869) | 15,452–38,280 (24,795) | 16,241–50,871 (31,076) | 1400 | nd | – |
Cd | <LOQ–<LOQ (<LOQ) | 0.522–1.041 (0.701) | <LOQ–1.068 (0.498) | 0.226 | <0.02–43.1 (0.527) | <0.5 |
Co | <LOQ–<LOQ (<LOQ) | 8.81–13.06 (10.58) | 8.53–11.54 (9.89) | <0.20 | <1.0–245 (10.3) | <3 |
Cr | <LOQ–<LOQ (<LOQ) | 34.2–47.2 (40.5) | 29.9–40.9 (36.5) | 3.05 | 2..0–1750 (31.0) | <6 |
Cu | 59.7–576.5 (275.2) | 36.3–98.9 (58.6) | 40.8–88.6 (63.5) | 3.94 | 1.0–998 (19.0) | <7 |
Fe | 30,850–148,422 (82,648) | 22,935–31,875 (27,243) | 23,090–29,668 (25,772) | 7100 | 600–200,000 (22,500) | – |
K | <LOQ–<LOQ (<LOQ) | 2980–4224 (3688) | 2847–4763 (3317) | 240 | nd | – |
Li | <LOQ–<LOQ (<LOQ) | 15.6–23.4 (18.8) | 21.4–60.4 (28.5) | nd | 0.28–271 (29.7) | – |
Mg | 4602–10,298 (7716) | 4649–8401 (5837) | 3839–12,860 (6716) | 600 | nd | – |
Mn | 3583–21,884 (11,336) | 375–1009 (640) | 491–1079 (660) | 330 | 24–18,900 (716) | – |
Na | <LOQ–<LOQ (<LOQ) | 274–3159 (1000) | 315–3693 (1257) | nd | nd | – |
Ni | <LOQ–<LOQ (<LOQ) | 26.2–40.2 (32.0) | 27.4–39.0 (31.3) | 3.76 | 2.0–1200 (28.6) | <6 |
Pb | <LOQ–<LOQ (<LOQ) | 31.8–71.8 (45.7) | 26.2–57.1 (41.6) | <1.00 | <3.0–4880 (29.8) | <15 |
Sr | <LOQ–<LOQ (<LOQ) | 56.6–110.6 (77.9) | 44.5–1603.3 (239.7) | 11.0 | 31–1352 (171) | – |
Zn | 87–1017 (455) | 154–383 (250) | 130–358 (249) | 13.7 | 7.0–11,400 (98) | <73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strzebońska, M.; Kostka, A. Geochemical State of Wilga River Environment in Kraków (Poland)—Historical Aspects and Existing Issues. Minerals 2021, 11, 908. https://doi.org/10.3390/min11080908
Strzebońska M, Kostka A. Geochemical State of Wilga River Environment in Kraków (Poland)—Historical Aspects and Existing Issues. Minerals. 2021; 11(8):908. https://doi.org/10.3390/min11080908
Chicago/Turabian StyleStrzebońska, Magdalena, and Anna Kostka. 2021. "Geochemical State of Wilga River Environment in Kraków (Poland)—Historical Aspects and Existing Issues" Minerals 11, no. 8: 908. https://doi.org/10.3390/min11080908
APA StyleStrzebońska, M., & Kostka, A. (2021). Geochemical State of Wilga River Environment in Kraków (Poland)—Historical Aspects and Existing Issues. Minerals, 11(8), 908. https://doi.org/10.3390/min11080908