Comparison between Siliceous Concretions from the Ionian Basin and the Apulian Platform Margins (Pre-Apulian Zone), Western Greece: Implication of Differential Diagenesis on Nodules Evolution
Abstract
:1. Introduction
2. Geological Setting of the Studied Sections
3. Methods
4. Description of the Studied Outcrops and Their Stratigraphic and Sedimentological Setting
4.1. APM: Kefalonia Island
4.2. IB: Ithaca and Kastos Islands
5. Description of Selected Concretions in the Outcrops and in the Laboratory after Cutting Them
5.1. Kefalonia Island
5.2. Ithaca and Atokos Islands
5.3. Kastos Island
6. Mineralogical Analysis by Means of XRPD
7. Cluster Analysis for Results Comparison between Present and Previous Studies
8. Petrographical Analysis of Thin Sections
9. Discussion
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bourli, N.; Kokkaliari, M.; Iliopoulos, I.; Pe-Piper, G.; Piper, D.J.; Maravelis, A.G.; Zelilidis, A. Mineralogy of siliceous concretions, cretaceous of Ionian zone, western Greece: Implication for diagenesis and porosity. Mar. Pet. Geol. 2019, 105, 45–63. [Google Scholar] [CrossRef]
- Zoumpouli, E. Carbonate Sedimentation in Kefalonia Island (Greece) Paxi Zone, during Mesozoic. Ph.D. Thesis, University of Patras, Rio Patras, Greece, 2016. [Google Scholar]
- Zijlstra, H.J. Early diagenetic silica precipitation, in relation to redox boundaries and bacterial metabolism, in late Cretaceous chalk of the Maastrichtian type locality. Geol. En Mijnb. 1987, 66, 343–355. [Google Scholar]
- Thomson, J.; Jarvis, I.; Green, D.R.; Green, D.A.; Clayton, T. Mobility and immobility of redox-sensitive elements in deep-sea turbidites during shallow burial. Geochim. Cosmochim. Acta 1998, 62, 643–656. [Google Scholar] [CrossRef]
- Gül, M. Occurrences of chert in Jurassic-Cretaceous calciturbidites (SW Turkey). Open Geosci. 2015, 7. [Google Scholar] [CrossRef]
- Paganoni, M.; Al Harethi, A.; Morad, D.; Morad, S.; Ceriani, A.; Mansurbeg, H.; Al Suwaidi, A.; Al-Aasm, I.S.; Ehrenberg, S.N.; Sirat, M. Impact of stylolitization on diagenesis of a lower Cretaceous reservoir from a giant oilfield, Abu Dhabi, United Arab Emirates. Sediment. Geol. 2016, 335, 70–92. [Google Scholar] [CrossRef]
- Martín-Martín, J.D.; Gomez-Rivas, E.; Gómez-Gras, D.; Travé, A.; Ameneiro, R.; Koehn, D.; Bons, P.D. Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geol. Soc. Lond. 2017, 459, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Morad, D.; Nader, F.; Morad, S.; Al Darmaki, F.; Hellevang, H. Impact of stylolitization on fluid flow and diagenesis in foreland basins: Evidence from an upper Jurassic carbonate gas reservoir, Abu Dhabi, United Arab Emirates. J. Sediment. Res. 2018, 88, 1345–1361. [Google Scholar] [CrossRef]
- Burgess, C.J.; Peter, C.K. Formation, distribution, and prediction of stylolites as permeability barriers in the Thamama group, Abu Dhabi. In Proceedings of the Middle East Oil Technical Conference and Exhibition, Bahrain, United Arab Emirates, 11–14 March 1985; Society of Petroleum Engineers: Richardson, TX, USA, 1985. [Google Scholar]
- Gomez-Rivas, E.; Martín-Martín, J.D.; Bons, P.D.; Koehn, D. Can stylolite networks control the geometry of hydrothermal alterations? Geotect. Res. 2015, 97, 34–36. [Google Scholar] [CrossRef]
- Koehn, D.; Renard, F.; Toussaint, R.; Passchier, C.W. Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth Planet. Sci. Lett. 2007, 257, 582–595. [Google Scholar] [CrossRef] [Green Version]
- Ebner, M.; Piazolo, S.; Renard, F.; Koehn, D. Stylolite interfaces and surrounding matrix material: Nature and role of heterogeneities in roughness and microstructural development. J. Struct. Geol. 2010, 32, 1070–1084. [Google Scholar] [CrossRef]
- Humphrey, E.; Gomez-Rivas, E.; Neilson, J.; Martín-Martín, J.D.; Healy, D.; Yao, S.; Bons, P.D. Quantitative analysis of stylolite networks in different platform carbonate facies. Mar. Pet. Geol. 2019, 114, 104203. [Google Scholar] [CrossRef]
- Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.; Passchier, C. Modelling of stylolite geometries and stress scaling. Earth Planet. Sci. Lett. 2012, 341–344, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Ben-Itzhak, L.L.; Aharonov, E.; Karcz, Z.; Kaduri, M.; Toussaint, R. Sedimentary stylolite networks and connectivity in limestone: Large-scale field observations and implications for structure evolution. J. Struct. Geol. 2014, 63, 106–123. [Google Scholar] [CrossRef] [Green Version]
- Zelilidis, A.; Piper, D.J.W.; Vakalas, J.; Avramidis, P.; Getsos, K. Oil and gas plays in Albania: Do equivalent plays exist in Greece? J. Pet. Geol. 2003, 26, 29–48. [Google Scholar] [CrossRef]
- Bourli, N.; Pantopoulos, G.; Maravelis, A.G.; Zoumpoulis, E.; Iliopoulos, G.; Pomoni-Papaioannou, F.; Kostopoulou, S.; Zelilidis, A. Late Cretaceous to early Eocene geological history of the eastern Ionian basin, southwestern Greece: An integrated sedimentological and bed thickness statistics analysis. Cretac. Res. 2019, 98, 47–71. [Google Scholar] [CrossRef]
- Aubouin, J. Contribution à l’étude géologique de la Grèce septentrionale: Le confins de l’ Epire et de la Thessalie. Ann. Géologiques Pays Helléniques 1959, 10, 1–483. [Google Scholar]
- Jones, W.D.V. Results of recent geological surveys in central-western Greece. Geol. Soc. Lond. 1968, 1645, 306–310. [Google Scholar]
- British Petroleum Company. The Geological Results of Petroleum Exploration in Western Greece; Institute for Geology and Subsurface Research: Athens, Greece, 1971; Volume 10. [Google Scholar]
- Smith, A.G.; Moores, E.M. Hellenides. In Mesozoic and Cenozoic Orogenic Belts; Spencer, A.M., Ed.; Scottish Academic Press: Edinburg, UK, 1974; pp. 159–186. [Google Scholar]
- Underhill, J. Late Cenozoic deformation of the Hellenic foreland, western Greece. Geol. Soc. Am. Bull. 1989, 101, 613–634. [Google Scholar] [CrossRef]
- Tserolas, P.; Maravelis, A.; Pasadakis, N.; Zelilidis, A. Organic geochemical features of the upper Miocene successions of Lefkas and Cephalonia islands, Ionian Sea, Greece: An integrated geochemical and statistical approach. Arab. J. Geosci. 2018, 11, 105. [Google Scholar] [CrossRef]
- Botziolis, C.; Maravelis, A.G.; Pantopoulos, G.; Kostopoulou, S.; Catuneanu, O.; Zelilidis, A. Stratigraphic and paleogeo-graphic development of a deep-marine foredeep: Central Pindos foreland basin, western Greece. Mar. Pet. Geol. 2021, 128, 105012. [Google Scholar] [CrossRef]
- Zelilidis, A.; Bourli, N.; Zoumpouli, E.; Maravelis, A. Tectonic inversion and deformation differences in the transition from Ionian basin to Apulian platform: The example from Ionian Islands, Greece. In Proceedings of the 2nd Conference of the Arabian Journal of Geosciences (CAJG), Sousse, Tunisia, 25–28 November 2019; Springer: Sousse, Tunisia, 2021. [Google Scholar]
- Cazzini, F.; Zotto, O.D.; Fantoni, R.; Ghielmi, M.; Ronchi, P.; Scotti, P. Oil and gas in the Adriatic foreland, Italy. J. Pet. Geol. 2015, 38, 255–279. [Google Scholar] [CrossRef]
- Zelilidis, A.; Maravelis, A.; Tserolas, P.; Konstantopoulos, P.A. An overview of the petroleum systems in the Ionian zone, onshore NW Greece and Albania. J. Pet. Geol. 2015, 38, 331–348. [Google Scholar] [CrossRef]
- Skourtsis-Coroneou, V.; Solakius, N.; Constantinidis, I. Cretaceous stratigraphy of the Ionian zone, Hellenides, western Greece. Cretac. Res. 1995, 16, 539–558. [Google Scholar] [CrossRef]
- Bourli, N.; Iliopoulos, G.; Papadopoulou, P.; Zelilidis, A. Microfacies and depositional conditions of Jurassic to Eocene car-bonates: Implication on Ionian basin evolution. Geosciences 2021, 11, 288. [Google Scholar] [CrossRef]
- Whitney, L.; Evans, W. Abbreviations for names of rock forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Piper, D.J.W.; Bourli, N.; Zelilidis, A. Evolution of sedimentary basins as recorded in silica concretions: An ex-ample from the Ionian zone, western Greece. Minerals 2021, 11, 763. [Google Scholar] [CrossRef]
- Walker, T.R. Reversible nature of chert-carbonate replacement in sedimentary rocks. GSA Bull. 1962, 73. [Google Scholar] [CrossRef]
- Piovesan, R.; Dalconi, M.C.; Maritan, L.; Mazzoli, C. X-ray powder diffraction clustering and quantitative phase analysis on historic mortars. Eur. J. Miner. 2013, 25, 165–175. [Google Scholar] [CrossRef] [Green Version]
A/A | S.N. | Thin Section Facies Analysis | Fossils | Age Based on Fossils |
---|---|---|---|---|
Kastos | ||||
1 | KI76 | Mudstone. SMF3/FZ1 | Radiolaria, Rotalipora cushmani, Clavihedbergella simplex, and Hedbergella planispira | Upper Cretaceous (Cenomanian) |
2 | KI72 | Wackestone/packstone, microbrecciated, and skeletan grains. SMF4/FZ3 | Miliolidae, Bivalve fragments, and Parasubbotina pseudobulloides | Upper Cretaceous (Maastrichtian) |
3 | KI70 | Wackestone, skeletal graines, and micrites. SMF3/FZ1 | Radiolaria, Clavihedbrgella simplex, Hedbergella planispira, Rotalipora cushmani, Praeglobotruncana delrioensis, Thalmanninella appenninica, Thalmanninella greenhornensis, Thalmanninella globotruncanoides, and Whiteinella archaeocretacea | Upper Cretaceous (Cenomanian) |
4 | KI68 | Packstone, microbioclastic, and microcrystalline. SMF2/FZ1-2 | Blefuscuiana gorbachikae, Blefuscuiana occulta, Blefuscuiana praetrocoidea, Globigerinelloides cf. ferreolensis, Globigerinelloides gottisi, Globigerinelloides barri, and Globigerinelloides blowi | Lower Cretaceous (Aptian) |
5 | KI67 | Wackestone, microbioclastic. SMF2/FZ1 | Radiolaria, Planomalina cheniurensis, Globigerinelloides sp., Blowiella blowi, Blowiella gottisi, and Hedbergella sp. | Lower Cretaceous (Aptian) |
6 | KI60 | A. mudstone with micrite skeletal grains B. microbioclastic, packstone, microcrystalline, and lamination. SMF3/FZ1 B. SMF2/FZ1-2 | Radiolaria, Hedbergella rischi | Lower Cretaceous (Albian) |
Ithaca-Gidaki | ||||
7 | Gidaki | Bioclastic floatstone/rudstone with reef-derived material. Inter-and intraparticle blocky cement. Intense meteoric diagenesis. SMF6/FZ4 | Orbitolina sp., Rudist fragments, Echinoderma fragments, and Cuneolina sp. | Lower to Upper Cretaceous (Albian to Cenomanian) |
8 | Gidaki | Bioclastic rudstone with reef-derived material. It is characterized by high porosity, due to extensive meteoric shell solution. Biomolds have been filled, partially or entirely, by blocky calcite cement. Most of molds are related to pedogenesis, due to extensive subaerial exposure. Abundant coarse bioclasts of rudists and, in less proportion, echinoderms. Intense meteoric diagenesis and pedogenesis. Most biomolds remained uncemented or cemented partially, with the rest of the space remaining open. In molds or cavities, remains of organic material have been observed. SMF6/FZ4 | Orbitolina sp., Rudist fragments, and Echinoderma fragments | Lower to Upper Cretaceous (Albian to Cenomanian) |
9 | Cave Rizes | Calciturbidite (alternation of calcarenite-calcirudite). Bioclasts of rudists and echinoderms transported in pelagic environment. Intense meteoric diagenesis (micritization). SMF4/FZ4 | Radiolaria, Ticinella sp. | Lower Cretaceous (Albian) |
Kefalonia | ||||
10 | group 1 Aenos central | Mudstone/wackstone, biomicrite with a few non skeletal clasts. Stylolites can be observed. SMF3/FZ3 | Radiolaria (Spumellaria), Hedbergella trocoidea, Clavihedbergella simplex, and Blefuscuiana gorbachikae | Lower Cretaceous (Lower Albian) |
11 | group 2 Aenos west | Wackestone with a few scattered ooids, recrystalised locally or sometimes more extensively with well-formed dolomite crystals, dolomitic limestone, or dolomite; locally bitoumenous. SMF3/?FZ1 | Radiolaria, filaments | Lower Cretaceous |
12 | // | Crystalline, recrystalised locally, or sometimes more extensively (dolomitized) with well-formed dolomite crystals, dolomitic limestone, or dolomite; bitoumenous. SMF3/?FZ1 | Radiolaria? | Lower Cretaceous |
13 | // | Wackestone, locally dolomitised with well-formed dolomite crystals; bitoumenous; stylolites are observed. SMF3/FZ1 | Radiolaria, Calpionellidae | Lower Cretaceous (Tithonian-Valanginian) |
14 | group 3 Aenos central | A. Bioclastic packstone to rudstone with ooids; large bioclast fragments can be observed. SMF5/FZ4 B. Wackestone/packstone with a few planktonic foraminifera. SMF3-4/FZ3 | Radiolaria, Algae fragments, Rudist fragments, Mollusk fragments, Cuneolina sp., Orbitolina sp., and Hedbrgella sp. | Lower to Upper Cretaceous (Late Albian–Late Cenomanian) |
15 | // | Microbrecciated limestone with ooids, exoclasts with peloids, biomicrite, and wackestone/packstone. SMF4-5/FZ4 | Radiolaria (Spumellaria), Nasselaria, Mollusc fragments, Algae, Miliolidae, Orbitolina sp., Hedbergella trocoidea, Hedbergella planispira, Globigerinelloides sp., and Biglobigerinella barri | Lower Cretaceous (Late Alptian–Early Albian) |
16 | // | A. Crystalline, recrystalised extensively (dolomitised) with well-formed dolomite crystals, dolomitic limestone, or dolomite; bitoumenous. B. Packstone to rudstone; pelloids are present. SMF5/FZ4 | Algae, Milliolidae, and Mollusc fragments | Lower Cretaceous |
17 | // | Packstone with scattered ooids, parts with pelloids in a sparitic matrix (exoclasts?), a few fenestral cavities, and large reef fragments. FZ4/SMF5 | Algae, Plaktonic foraminifera | |
18 | group 4 Sami | Wackestone, microbioclastic. SMF3/FZ3 | Radiolaria, Morozovella angulata, Morozovella aequa, Morozovella conicotruncana, Morozovella velascoensis, Morozovella occlusa, Planorotalites chapmani, Subbotina velascoensis, Subbotina triangularis, Globanomalina ehrenbergi, Igorina sp., and Acarinina sp. | Paleocene (Selandian–Thanetian) |
Sample | S/N | Position | Quartz | Moganite | Calcite | Dolomite | Others |
---|---|---|---|---|---|---|---|
Kastos Island-Lower Cretaceous Vigla Formation | |||||||
C1. Nodules | |||||||
VK1 | 40 | main body | +++++ | + | - | - | |
VK2 | 41 | main body | +++++ | + | +/++ | - | opal-A |
VK3 | 42 | main body | +++++ | + | +++ | - | |
VK4a | 43a | rim | + | - | +++++ | tr | |
VK4b | 43b | main body | +++++ | + | tr | - | opal-A |
C2. Bedded cherts | |||||||
VP1 | 44 | main body | +++++ | + | tr | - | |
VP2 | 45 | main body | +++++ | + | tr | tr | |
VP3 | 46 | main body | +++++ | + | - | tr | maghemite |
VP4 | 47 | main body | +++++ | + | - | tr | maghemite, opal-A |
VP5 | 48 | main body | +++++ | + | - | tr/+ | maghemite, opal-A |
VP6 | 49 | main body | +++++ | + | - | tr/+ | opal-A |
VP7 | 50 | main body | +++++ | + | ++++ | - | maghemite |
VP8 | 51 | main body | +++++ | - | - | tr | maghemite |
VP9 | 52 | main body | +++++ | tr | - | tr | maghemite |
Kastos Island-Upper Cretaceous Senonian Formation | |||||||
D1. Nodules | |||||||
SK1 | 53 | main body | +++++ | + | ++ | - | opal-A, maghemite |
SK2 | 54 | main body | +++++ | + | ++ | - | |
SK3a | 55a | rim | ++++ | - | +++++ | - | |
SK3b | 55b | main body | +++++ | tr | ++ | - | |
SK4a | 56a | main body | +++++ | + | ++ | - | Mg-cal |
SK4b | 56b | core | ++++ | - | +++++ | - | |
SK4c | 56c | dark grey dikes | ++++ | - | ++ | - | opal-A |
SK5a | 57a | core | +++ | - | +++++ | - | |
SK5b | 57b | main body | +++++ | + | ++ | - | opal-A |
SK5c | 57c | rim | +++++ | + | ++ | - | |
SK6a | 58a | rim | +++++ | + | +/++ | - | |
SK6b | 58b | main body | +++++ | + | + | - | |
SK7a | 59a | rim | +++++ | - | ++++ | - | |
SK7b | 59b | main body | +++++ | + | tr | - | maghemite |
SK8 | 60 | main body | +++++ | + | tr | - | maghemite |
Bedded Cherts | |||||||
SP1 | 61 | main body | +++++ | tr/+ | ++ | - | |
SP2 | 62 | main body | +++++ | tr/+ | ++ | - | opal-A |
SP3 | 63 | main body | +++++ | tr/+ | tr | - | |
SP4a | 64a | dark red main body | +++++ | tr | - | - | maghemite |
SP4b | 64b | light red main body | +++++ | tr/+ | tr | - | maghemite |
SP5 | 65 | main body | +++++ | tr | ++++ | - | |
SP6a | 66a | grey main body | +++++ | - | + | - | |
SP6b | 66b | white main body | +++ | - | +++++ | - | |
SP6c | 66c | grey-red main body | +++++ | tr | +++ | - | |
SP7 | 67 | main body | +++++ | tr/+ | +/++ | - |
Groups | Sample Code | Sample No | Sampling Area | QZ | MOG | CAL | Maghemite | Hal | Dol |
---|---|---|---|---|---|---|---|---|---|
Apulian Platform Margins–Kefalonia Island | |||||||||
Group 1 | A11_A | 1 | total | +++++ | ++ | ||||
// | A11b_1 | 2a | core | +++++ | tr | ||||
// | A11b_2 | 2b | rim | +++++ | + | ||||
// | A11d_2 | 3a | core | +++++ | + | ||||
// | A11d_1 | 3b | rim | +++++ | ++ | ||||
// | A11z | 4 | total | +++++ | ++ | ||||
// | A12a_1 | 5a | core | +++++ | + | ||||
// | A12A_2 | 5b | rim | +++++ | ++ | ||||
// | A12b | 6 | total | +++++ | tr | tr | |||
// | A12g_1 | 7a | core | +++++ | + | ||||
// | A12g_2 | 7b | rim | +++++ | ++ | tr | |||
Group 2 | A2_1 | 8a | core | +++++ | + | ||||
// | A2_2 | 8b | rim | +++++ | + | ||||
// | A3 | 9 | total | +++++ | + | ||||
// | A4 | 10 | total | +++++ | ++ | ||||
// | A5_1 | 11a | core | +++++ | + | tr Mg-cal | |||
// | A5_2 | 11b | rim | +++++ | + | ||||
// | A6 | 12 | total | +++++ | + | ||||
// | A7_1 | 13a | core | +++++ | + | tr < 5% | |||
// | A7_2 | 13b | rim | +++++ | + | + from 5 as 15% | |||
// | A8_1 | 14a | core | +++++ | + | ++ from 15 as 25% | |||
// | A8_2 | 14b | rim | +++++ | + | +++ from 25 as 35% | |||
Group 3 | A1 | 15 | total | +++++ | ++ | ++++ from 35 as 50% | |||
Group 4 | S1_1 | 16a | core | +++++ | +++ | +++++ more than 50% | |||
// | S1_2 | 16b | rim | +++++ | ++ | tr | |||
// | S1b_1 | 17a | core | +++++ | ++ | tr | |||
// | S1b_2 | 17b | rim | +++++ | +++ | ||||
// | S2g_1 | 18a | dark | +++++ | +++ | ||||
// | S2g_2 | 18b | bright | +++++ | +++ | ||||
// | S3 | 19 | total | +++++ | ++ | + | |||
// | S4a_1 | 20a | core | +++++ | ++ | tr | |||
// | S4a_2 | 20b | rim | +++++ | ++ | tr | |||
// | S4b_2 | 21a | core | +++++ | ++ | ||||
// | S4b_1 | 21b | rim | +++++ | ++ |
Ionian Basin–Ithaca Island | ||||||||
---|---|---|---|---|---|---|---|---|
ITHS1 | 1 | total | +++++ | + | +++ | |||
ITHS2_1 | 2a | core in | +++++ | + | tr | tr | tr | |
ITHS2_2 | 2b | rim 1 | +++++ | + | tr | |||
ITHS2_3 | 2c | core out | +++++ | ++ | ||||
ITHS2_4 | 2d | rim 2 | +++++ | + | ||||
G1_2 | 3a | core | +++++ | tr | ||||
G1_1 | 3b | rim | +++++ | + | ||||
G2_2 | 4a | dark | +++++ | + | tr | |||
G2_1 | 4b | bright | +++++ | tr | ||||
G3 | 5 | total | +++++ | ++ | ||||
G4_1 | 6a | dark | +++++ | tr | tr | |||
G4_2 | 6b | bright | +++++ | + | tr | |||
G4_3 | 6c | more bright | +++++ | + | ||||
G5_1 | 7a | dark | +++++ | tr | tr | |||
G5_2 | 7b | bright | +++++ | + | ||||
G6 | 8 | total | +++++ | + | tr | tr | ||
Ionian Basin-Atokos Island | ||||||||
ATOK_1 | 9a | core | ++++ | +++++ | ||||
AΤOΚ_2 | 9b | rim around the core | + | +++++ | ||||
AΤOΚ_3 | 9c | rim | +++++ | tr | + |
Clusters | Quartz (wt %) | Moganite (wt %) | Calcite (wt %) |
---|---|---|---|
1a_1 | 8.6–28.8 | - | 71.2–91.4 |
1a_2 | 41.3–66.8 | - | 33.2–58.7 |
1b | 2, 5 | - | 97, 5 |
2a | 87.1–90.2 | 9.3–11.1 | 0–3.6 |
2b | 56.8–89.3 | 0–10.7 | 9.1–39.6 |
2c | 94.7–98.1 | 0–3.3 | 1.7–3.1 |
2d_1 | 79.9–93.7 | 3.1–8.8 | 0–12.6 |
2d_2_1 | 79.9–96.9 | 3.1–19.3 | 0–1.1 |
2d_2_2 | 68.8–76.9 | 18.7–20.8 | 4.4–10.4 |
2d_2_3 | 73.9–86.3 | 13.7–26.1 | 0 |
2d_2_4 | 74.2–85.3 | 16.7–24.2 | 0 |
2d_2_5 | 77.8–91.1 | 8.8–21.4 | 0 |
2d_3 | 74.4–95.8 | 4.2–20.8 | 0–5.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourli, N.; Kokkaliari, M.; Dimopoulos, N.; Iliopoulos, I.; Zoumpouli, E.; Iliopoulos, G.; Zelilidis, A. Comparison between Siliceous Concretions from the Ionian Basin and the Apulian Platform Margins (Pre-Apulian Zone), Western Greece: Implication of Differential Diagenesis on Nodules Evolution. Minerals 2021, 11, 890. https://doi.org/10.3390/min11080890
Bourli N, Kokkaliari M, Dimopoulos N, Iliopoulos I, Zoumpouli E, Iliopoulos G, Zelilidis A. Comparison between Siliceous Concretions from the Ionian Basin and the Apulian Platform Margins (Pre-Apulian Zone), Western Greece: Implication of Differential Diagenesis on Nodules Evolution. Minerals. 2021; 11(8):890. https://doi.org/10.3390/min11080890
Chicago/Turabian StyleBourli, Nicolina, Maria Kokkaliari, Nikolaos Dimopoulos, Ioannis Iliopoulos, Elena Zoumpouli, George Iliopoulos, and Avraam Zelilidis. 2021. "Comparison between Siliceous Concretions from the Ionian Basin and the Apulian Platform Margins (Pre-Apulian Zone), Western Greece: Implication of Differential Diagenesis on Nodules Evolution" Minerals 11, no. 8: 890. https://doi.org/10.3390/min11080890
APA StyleBourli, N., Kokkaliari, M., Dimopoulos, N., Iliopoulos, I., Zoumpouli, E., Iliopoulos, G., & Zelilidis, A. (2021). Comparison between Siliceous Concretions from the Ionian Basin and the Apulian Platform Margins (Pre-Apulian Zone), Western Greece: Implication of Differential Diagenesis on Nodules Evolution. Minerals, 11(8), 890. https://doi.org/10.3390/min11080890