Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution during Pegmatite Formation
Abstract
:1. Introduction
2. Geological Setting
3. Location and Petrography of Pegmatite Samples
4. Materials and Methods
4.1. Electron Microprobe Quantitative
4.2. Electron Microprobe Qualitative
4.3. Microthermometry
4.4. Micro-Raman Spectroscopy
Host | FI-Type | Texture | Chemistry | Phases | |||
Grt | Type-N | p | N2 | LN2 ± S | |||
Grt | Type-A | p | H2O-NaCl-CaCl2 ± MgCl2 | Laqu ± Vaqu ± S | |||
Grt | Type-G | p | CO2-N2 | Lcar ± S | |||
Tur | Type-T1 | p | CO2-N2 | Lcar | |||
Tur | Type-T2 | ps-s | CO2-N2 ± CH4-H2O-NaCl-CaCl2 ± MgCl2 | Laqu + Lcar | |||
Spd | Type-S | p-ps | CO2-N2-H2O-NaCl-CaCl2 ± MgCl2 | Laqu + Lcar + S | |||
Spd* | Type-S | p-ps | CO2-N2-H2O-NaCl-CaCl2 ± MgCl2 | Laqu + Lcar ± Vcar + S | |||
Qz | Type-Q1 | p | CO2-N2 | Laqu + Lcar | |||
Qz | Type-Q2 | ps-s | CO2-N2-H2O-NaCl-CaCl2 ± MgCl2 | Laqu ± Vaqu | |||
Qz | Type-Q3 | ps-s | H2O-NaCl-CaCl2 ± MgCl2 | Laqu + Vaqu | |||
FI-Type | Solids | Tm(car) (°C) | Te(ice) (°C) | Tm(HH) (°C) | Tm(ice) (°C) | Tm(Cla) (°C) | |
Type-N | | Ms, Cal, Rt, Grt | |||||
Type-A | Rds, Ap, Ilm, Ky | −61.9 to −58.0 | −38.5 to −33.0 | −8.7 to −4.1 | |||
Type-G | Zrn, Qz | −65.3 to −56.6 | |||||
Type-T1 | −60.0 to −58.7 | ||||||
Type-T2 | −61.8 to −58.3 | −54.2 to −46.0 | −27.2 to −23.8 | −4.5 to −3.1 | 8.5 to 14.5 | ||
Type-S | | Qz, Zbl, Ms, Cst | −58.0 to −57.5 | −55.2 to −53.6 | −28.0 to −23.2 | −7.7 to −4.2 | 7.9 to 13.2 |
Type-S | Wo, Ky, Fl, Ab, Zrn | −57.6 to −56.7 | −53.8 to −50.7 | −23.7 to −23.1 | −6.1 to −2.2 | 0.0 to 13.6 | |
Type-Q1 | −60.0 to −59.2 | ||||||
Type-Q2 | ~−59.6 | −42.2 to −48.4 | −33.0 to −29.2 | −11.2 to −9.0 | |||
Type-Q3 | −60.0 to −40.0 | −37.8 to −29.3 | −19.0 to −11.0 | ||||
FI-Type | Th(car) → L (°C) | Th(car) → V (°C) | Thtot(aqu) → L | Thtot(car) → L | Density | Salinity | |
Type-N | −150.0 to −148.3 * | 0.43–0.47 | |||||
Type-A | 192.6 to 321.0 | 0.76–0.99 | 7.2–12.8 | ||||
Type-G | −60.0 to 22.0 | 0.61–1.16 | |||||
Type-T1 | −54.9 to −32.8 | 0.80–0.85 | |||||
Type-T2 | −47.4 to 7.7 | 215.1 to 294.5 | 0.18–0.87 | 3.2–6.9 | |||
Type-S | 0.3 to 17.0 | 302.1 to 583.0 | 0.72–1.11 | 7.3–11.6 | |||
Type-S | 18.0 to 24.0 | 17.6 to 25.3 | 255.8 to 311.7 | 0.68–0.89 | 3.8–9.6 | ||
Type-Q1 | −25.3 to −5.7 | −41.0 to −31.1 | n.c. | ||||
Type-Q2 | −23.2 to −17.2 | 130.5 to 206.0 | n.o. | n.c. | 13.0–15.0 | ||
Type-Q3 | 125.5 to 176.2 | 1.02–1.10 | 15.0–20.2 |
5. Results
5.1. Fluid Inclusion Study
5.1.1. Fluid Inclusions in Magmatic Garnets (Type-N, Type-A, Type-G)
5.1.2. Fluid Inclusions in Tourmaline (Type-T1 and Type-T2)
5.1.3. Fluid Inclusions in Spodumene (Type-S)
5.1.4. Fluid Inclusions in the Recrystallized Quartz Matrix (Type-Q1, Type-Q2, and Type-Q3)
5.2. Solid Mineral Inclusion Study
5.3. Major Element Chemistry of Magmatic Garnet Domains
6. Discussion
6.1. Origin of Fluids and Their Post-Entrapment Modification
6.1.1. Fluid Unmixing during Garnet Crystallization
6.1.2. Magmatic-Metamorphic Fluid Mixing during Tourmaline and Quartz Crystallization
6.1.3. Mixed Fluid during Spodumene Crystallization
6.2. Permian Fluid Evolution during Solidification of the Granitic Melt
6.3. P-T Conditions of Fluid Entrapment
6.4. Is the Proposed Chronology of Fluid Entrapment Representative to All Pegmatite Minerals of the Koralpe?
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thöni, M.; Miller, C. Permo-Triassic pegmatites in the eo-Alpine eclogite-facies Koralpe complex, Austria: Age and magma source constraints from mineral chemical, Rb–Sr and Sm–Nd isotope data. Schweiz. Mineral. Petrog. Mitt. 2000, 80, 169–186. [Google Scholar]
- Schuster, R.; Scharbert, S.; Abart, R.; Frank, W. Permo-Triassic extension and related HT/LP metamorphism in the Austroalpine–Southalpine realm. Mitt. Ges. Geol. Bergbaustud. Österr. 2001, 45, 111–141. [Google Scholar]
- Rebay, G.; Spalla, M. Emplacement at granulite facies conditions of the Sesia-Lanzo metagabbros: An early record of Permian rifting? Lithos 2001, 58, 85–104. [Google Scholar] [CrossRef]
- Schuster, R.; Stüwe, K. The Permian Metamorphic Event in the Alps. Geology 2008, 36, 603–606. [Google Scholar] [CrossRef]
- Kunz, B.E.; Manzotti, P.; von Niederhäusern, B.; Engi, M.; Darling, J.R.; Giuntoli, F.; Lanari, P. Permian high-temperature metamorphism in the Western Alps (NW Italy). Int. J. Earth Sci. 2018, 107, 203–229. [Google Scholar] [CrossRef] [Green Version]
- Knoll, T.; Schuster, R.; Huet, B.; Mali, H.; Onuk, P.; Horschinegg, M.; Ertl, A.; Giester, G. Spodumene pegmatites and related leucogranites from the Austroalpine unit (Eastern Alps, Central Europe): Field relations, petrography, geochemistry and geochronology. Can. Mineral. 2018, 56, 489–528. [Google Scholar] [CrossRef]
- Schuster, R.; Huet, B.; Knoll, T.; Paulick, H. Anatectic origin of albite-spodumene pegmatites: A geochemical model. Geophys. Res. Abstr. 2019, 21, 2019–7277. [Google Scholar]
- Konzett, J.; Schneider, T.; Nedyalkova, L.; Hauzenberger, C.; Melcher, F.; Gerdes, A.; Whitehouse, M. Anatectic Granitic Pegmatites from the Eastern Alps: A case of variable Rare-metal enrichment during high-grade regional metamorphism–I: Mineral assemblages, geochemical characteristics, and emplacement ages. Can. Mineral. 2018a, 56, 555–602. [Google Scholar] [CrossRef]
- Konzett, J.; Hauzenberger, C.; Ludwig, T.; Stalder, R. Anatectic Granitic Pegmatites from the Eastern Alps: A case of variable Rare-metal enrichment during high-grade regional metamorphism–II: Pegmatite staurolite as an indicator of anatectic pegmatite parent melt formation—a field and experimental study. Can. Mineral. 2018b, 56, 603–624. [Google Scholar] [CrossRef]
- Schmid, S.M.; Fügenschuh, B.; Kissling, E.; Schuster, R. Tectonic map and overall architecture of the Alpine orogeny. Eclog. Geol. Helv. 2004, 97, 93–117. [Google Scholar] [CrossRef]
- Schuster, R.; Tropper, P.; Krenn, E.; Finger, F.; Frank, W.; Philippitsch, R. Prograde Permo-Triassic metamorphic HT/LP assemblages from the Austroalpine Jenig Complex (Carinthia, Austria). Austrian J. Earth Sci. 2015, 108, 73–90. [Google Scholar] [CrossRef]
- London, D. Magmatic-hydrothermal transition in the Tanco rare-element pegmatite: Evidence from fluid inclusions and phase-equilibrium experiments. Am. Mineral. 1986, 71, 376–395. [Google Scholar]
- Whitworth, M.P.; Rankin, A.H. Evolution of fluid phases associated with lithium pegmatites from SE Ireland. Miner. Mag. 1989, 53, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Linnen, R.L.; Williams-Jones, A.E. The evolution of pegmatite-hosted Sn-W mineralization at Nong Sua, Thailand: Evidence from fluid inclusions and stable isotopes. Geochim. Cosmochim. Acta 1994, 58, 735–747. [Google Scholar] [CrossRef]
- Beurlen, H.; Da Silva, M.R.R.; De Castro, C. Fluid origin and evolution during the formation of rare-element pegmatites from the Borborema Province, Northern Brazil. Rev. Bras. Geociências 2000, 30, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Fuertes-Fuente, M.; Martin-Izard, A.; Boiron, M.C.; Viñuela, J.M. P–T Path and Fluid Evolution in the Franqueira Granitic Pegmatite, Central Galicia, Northwestern Spain. Can. Mineral. 2000, 38, 1163–1175. [Google Scholar] [CrossRef] [Green Version]
- Masoudi, F.; Yardley, B.W.D. Magmatic and Metamorphic Fluids in Pegmatite Development: Evidence from Borujerd Complex, Iran. J. Sci. Islamic Repub. Iran 2005, 16, 43–53. [Google Scholar]
- Rickers, K.; Thomas, R.; Heinrich, W. The behavior of trace elements during the chemical evolution of the H2O-, B-, and F-rich granite–pegmatite–hydrothermal system at Ehrenfriedersdorf, Germany: A SXRF study of melt and fluid inclusions. Miner. Depos. 2006, 41, 229–245. [Google Scholar] [CrossRef]
- Thomas, R.; Davison, P.; Beurlen, H. The competing models for the origin and internal evolution of granitic pegmatites in the light melt and fluid inclusion research. Miner. Petrol. 2012, 106, 55–73. [Google Scholar] [CrossRef]
- Thomas, R.; Davison, P. Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state–consequences for the formation of pegmatites and ore deposites. Ore Geol. Rev. 2016, 72, 1088–1101. [Google Scholar] [CrossRef]
- Fredriksson, J. Fluid Inclusion and Trace-Element Analysis of the Rare-Element Pegmatite Bodies Altim and Tamanduá from the Borborema Province, Brazil. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2017. [Google Scholar]
- Thomas, A.V.; Spooner, E.T.C. Fluid inclusions in the systems H2O-CH4-NaCl-CO2 from metasomatic tourmaline within the border unit of the Tanco zoned granite pegmatite, S.E. Manitoba. Geochim. Cosmochim. Acta 1988, 52, 1065–1075. [Google Scholar] [CrossRef]
- Krenn, K.; Konzett, J.; Stalder, R. Anatectic granitic pegmatites from the eastern Alps: A case of variable rare metal enrichment during high-grade regional metamorphism. III: Fluid inclusions as potential indicators for anatectic pegmatite parent melt formation. Can. Mineral. 2021, in press. [Google Scholar]
- Huff, T.A.; Nabelek, P.I. Production of carbonic fluids during metamorphism of graphitic pelites in a collisional orogeny—An assessment from fluid inclusions. Geochim. Cosmochim. Acta 2007, 71, 4997–5015. [Google Scholar] [CrossRef]
- Beck-Mannagetta, P. 188 Wolfsberg, Geological Map of Austria 1:50,000; Geological Survey of Austria: Vienna, Austria, 1980.
- Habler, G.; Thöni, M.; Miller, C. Major and trace element chemistry and Sm-Nd age correlation of magmatic pegmatite garnet overprinted by eclogite-facies metamorphism. Chem. Geol. 2007, 241, 4–22. [Google Scholar] [CrossRef]
- Thöni, M.; Miller, C.; Zanetti, A.; Habler, G.; Goessler, W. Sm-Nd isotope systematics of high-REE accessory minerals and major phases: ID-TIMS, LA-ICP-MS and EPMA data constrain multiple Permian-Triassic pegmatite emplacement in the Koralpe, Eastern Alps. Chem. Geol. 2008, 254, 216–237. [Google Scholar] [CrossRef]
- Miller, C.; Thöni, M.; Konzett, J.; Kurz, W.; Schuster, R. Eclogites from the Koralpe and Saualpe type-localities, Eastern Alps, Austria. Mitt. Österr. Miner. Ges. 2005, 150, 227–263. [Google Scholar]
- Tenczer, V.; Stüwe, K. The metamorphic field gradient in the eclogite type locality Koralpe region, Eastern Alps. J. Metam. Geol. 2003, 21, 377–393. [Google Scholar] [CrossRef]
- Thöni, M. Dating eclogite-facies metamorphism in the Eastern Alps—approaches, results, interpretations: A review. Miner. Petrol. 2006, 88, 123–148. [Google Scholar] [CrossRef]
- Göd, R. The spodumene deposit at “Weinebene”, Koralpe, Austria. Miner. Depos. 1989, 24, 270–278. [Google Scholar] [CrossRef]
- Niedermayr, G.; Göd, R. Das Spodumenvorkommen auf der Weinebene und seine Mineralien. Carinthia II 1992, 182, 21–35. [Google Scholar]
- Moser, B.; Postl, W.; Walter, F. Ein Beryll- und Spodumen führender Pegmatit vom Klementkogel, nördliche Koralpe, Steiermark. Mitt. Abt. Miner. Landesm. Joann. 1987, 53, 21–25. [Google Scholar]
- Oakes, C.S.; Bodnar, R.J.; Simonson, T.M. The system NaCl-CaCl2-H2O: The ice liquidus at 1 atm total pressure. Geochim. Cosmochim. Acta 1990, 54, 603–610. [Google Scholar] [CrossRef]
- Duan, Z.; Møller, N.; Weare, J.H. A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochim. Cosmochim. Acta 1996, 60, 1209–1216. [Google Scholar] [CrossRef]
- Naden, J. CalcicBrine: A Microsoft Excel 5.0 Add-in for calculating salinities from microthermometric data in the system NaCl-CaCl2-H2O. In PACROFI VI; Brown, P.E., Hagemann, S.G., Eds.; University of Wisconsin-Madison: Madison, WI, USA, 1996; pp. 97–98. [Google Scholar]
- Jacobsen, R.T.; Stewart, R.B.; Jahangiri, M. Thermodynamic properties of nitrogen from the freezing line to 2000 K at pressures to 1000 MPa. J. Phys. Chem. Ref. Data 1986, 15, 735–909. [Google Scholar] [CrossRef]
- Bakker, R.J. Package FLUIDS 1 Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem. Geol. 2003, 194, 3–23. [Google Scholar] [CrossRef]
- Diamond, L. Glossary: Terms and symbols used in fluid inclusion studies. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; Volume 32, pp. 365–374. [Google Scholar]
- Davis, D.W.; Lowenstein, T.K.; Spencer, R.J. Melting behaviour of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgC12-H2O, and NaCl-CaCl2-H2O. Geochim. Cosmochim. Acta 1990, 54, 591–601. [Google Scholar] [CrossRef]
- Goldstein, R.H.; Reynolds, T.J. Systematics of fluid inclusions in diagenetic minerals. In SEPM Short Course; SEPM: Tulsa, OK, USA, 1994; Volume 31. [Google Scholar]
- Bodnar, R.J. Introduction to aqueous-electrolyte fluid inclusions. In Fluid Inclusions: Analysis and Interpretation; Samson, I., Anderson, A., Marshall, D., Eds.; Mineralogical Association of Canada Short Course Series; Mineralogical Association of Canada: Ottawa, ON, Canada, 2003; Volume 32, pp. 81–100. [Google Scholar]
- Burke, E.A.J. Raman microspectrometry of fluid inclusions. Lithos 2001, 55, 139–158. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, W.E. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Frezzotti, M.L.; Touret, J.L.R. CO2, carbonate-rich melts and brines in the mantle. Geosci. Front. 2014, 5, 697–710. [Google Scholar] [CrossRef]
- Anderson, A.J.; Clark, A.H.; Gray, S. The occurrence and origin of zabuyelite (Li2CO3) in spodumene-hosted fluid inclusions: Implications for the internal evolution of rare-element granitic pegmatites. Can. Mineral. 2001, 39, 1513–1527. [Google Scholar] [CrossRef]
- Anderson, A.J. Microthermometric behavior of crystal-rich inclusions in spodumene under confining pressure. Can. Mineral. 2019, 57, 853–865. [Google Scholar] [CrossRef]
- Moine, B.; Guillot, C.; Gibert, F. Controls of the composition of nitrogen-rich fluids originating from reaction with graphite and ammonium-bearing biotite. Geochim. Cosmochim. Acta 1994, 58, 5503–5523. [Google Scholar] [CrossRef]
- Diamond, L.W. Review of the systematics of CO2-H2O fluid inclusions. Lithos 2001, 55, 69–99. [Google Scholar] [CrossRef]
- Roedder, E. Fluid Inclusions. In Reviews in Mineralogy; Mineralogical Society of America: Chantilly, VA, USA, 1984; Volume 12, 400p. [Google Scholar]
- Krenn, K.; Huong, L.T.T. Fluid characteristics from shallow magmatic environments: A contribution to danburite bearing Luc Yen pegmatites, Northern Vietnam. Vietnam J. Earth Sci. 2019, 41, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Selway, J.B.; Breaks, F.W.; Tindle, A.G. A review of rare element (Li-Cs-Ta) pegmatite exploration techniques for the Superior Province, Canada and large worldwide tantalum deposits. Explor. Min. Geol. 2005, 14, 1–30. [Google Scholar] [CrossRef]
- London, D. Pegmatites. Can. Mineral. Spec. Publ. 2008, 10, 347. [Google Scholar]
- Proyer, A. The preservation of high-pressure rocks during exhumation: Metagranites and metapelites. Lithos 2003, 70, 183–194. [Google Scholar] [CrossRef]
- Gaidies, F.; Abart, R.; De Capitani, C.; Schuster, R.; Connolly, A.D.; Reusser, E. Characterization of polymetamorphism in the Austroalpinebasement east of the Tauern Window using garnet isopleth thermobarometry. J. Metamorph. Geol. 2006, 24, 451–475. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krenn, K.; Husar, M.; Mikulics, A. Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution during Pegmatite Formation. Minerals 2021, 11, 638. https://doi.org/10.3390/min11060638
Krenn K, Husar M, Mikulics A. Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution during Pegmatite Formation. Minerals. 2021; 11(6):638. https://doi.org/10.3390/min11060638
Chicago/Turabian StyleKrenn, Kurt, Martina Husar, and Anna Mikulics. 2021. "Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution during Pegmatite Formation" Minerals 11, no. 6: 638. https://doi.org/10.3390/min11060638
APA StyleKrenn, K., Husar, M., & Mikulics, A. (2021). Fluid and Solid Inclusions in Host Minerals of Permian Pegmatites from Koralpe (Austria): Deciphering the Permian Fluid Evolution during Pegmatite Formation. Minerals, 11(6), 638. https://doi.org/10.3390/min11060638