Iron-Rich Spherules of Taihu Lake: Origin Hypothesis of Taihu Lake Basin in China
Abstract
1. Introduction
2. Geological Background and Experimental Methods
2.1. Geological Background and Sampling Location
2.2. Experimental Methods
3. Results
3.1. Occurrence and Distribution of Iron-Rich Spherules
3.2. Morphological Characteristics of Iron-Rich Spherules
3.3. Microscopic Observation Data
3.3.1. XRD Analysis of Iron-Rich Spherules
3.3.2. Micro-Textures of Iron-Rich Spherules
3.3.3. EPMA Data
3.3.4. TEM Data and C Bits
4. Discussion
4.1. Iron-Rich Spherules Occurring in A Marker Silty Layer
4.2. Iron-Rich Spherules Are Not Iron-Manganese Nodules
4.3. Iron-Rich Spherules Are Aerosol Products Rather Than Hydrosol Products
4.4. Origin of The Iron-Rich Spherules and Airburst Plume
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Yu, Z.; Yun, C. The development of the Yangtze river delta’s landscape. Acta Geogr. Sin. 1959, 25, 201–220. [Google Scholar]
- Huang, D.; Yang, S.; Liu, Z.; Mei, Z. Geological studies of the formation and development of the three large fresh-water lakes in the lower Yangtze valley. Oceanol. Limnol. Sin. 1965, 7, 396–426. [Google Scholar]
- Sun, S.; Huang, Y. Taihu Lake; Ocean Press: Beijing, China, 1993; pp. 23–32. [Google Scholar]
- Shen, Z. Volcanic explosion-effusion and formation of Taihu Lake. Earth Sci. J. China Univ. Geosci. 2003, 28, 441–444. [Google Scholar]
- Jiang, J.; Dou, H.; Su, S. Freshwater Lake Groups in the Middle and Lower Reaches of the Yangtze and Huaihe River; Changjiang Publishing House: Wuhan, China, 2009; pp. 124–169. [Google Scholar]
- Sun, S.; Wu, Y. The formation and modern sedimentation of Taihu Lake. Sci. China Ser. B 1987, 12, 1329–1339. [Google Scholar]
- He, Y.; Xu, D.; Lu, D.; Shen, Z.; Lin, C.; Shi, L. Preliminary study on the origin of Taihu Lake: Inference from shock Deformation features in Quartz. Chin. Sci. Bull. 1991, 36, 847–850. [Google Scholar]
- Yang, Z.; Xu, D. Some super-microstructures in quartz grains from the Taihu Lake region, China, and their genetic significance. Sci. Geol. Sinca 1993, 28, 161–168. [Google Scholar]
- Wang, E.; Zhu, Z.; Zhang, H.; Cao, H. Discovery of shatter cones at Jueshan Island, Taihu Lake. Chin. Sci. Bull. 1994, 39, 1210–1214. [Google Scholar]
- Wang, E.; Sharpton, V.L.; Burke, K.; Wan, Y.; Shi, Y. Discovery of shock metamorphic quartz at Taihu Lake Zeshan island and its implications. Chin. Sci. Bull. 1994, 39, 419–423. [Google Scholar]
- Wang, E.; Wan, Y.; Xu, S. Discovery and implication of shock metamorphic unloading microfractrues in Devonian bedrock of Taihu Lake. Sci. China Ser. D 2002, 45, 459–467. [Google Scholar]
- Wang, H.; Xie, Z.; Qian, H. Discovery of Impact ejecta from Taihu Lake impact crater. Geol. J. China Univ. 2009, 15, 437–444. [Google Scholar]
- Dong, Y.; Xie, Z.; Zuo, S. The Deformation Features of Quartz grains In the Sandstone of Taihu Area:Taihu Impact Origin Controversy. Geol. J. China Univ. 2012, 18, 395–403. [Google Scholar]
- Zuo, S.; Xie, Z. Mineralogical study of iron-rich elongated concretions in Holence silt layer in Taihu Lake region. Geol. J. China Univ. 2021, 27, 172–182. [Google Scholar]
- Yuan, Y.; Li, C.; Zuo, S.; Sheng, X.; Lin, C.; Xie, Z. Holocene sedimentary characteristics of the core YLL1 of Taihu Lake revealing evolution history of Taihu Lake basin. Quat. Sci. 2019, 39, 1133–1147. [Google Scholar]
- Chang, W.Y.B.; Xu, X.; Yang, J.; Liu, J. Evolution in Taihu Lake ecosystem as evidence of changes in sediment profiles. J. Lake Sci. 1994, 3, 217–226. [Google Scholar] [CrossRef]
- Hong, X. Origin and evolution of the Taihu Lake. Mar. Geol. Quat. Geol. 1991, 4, 87–99. [Google Scholar]
- Wang, Y.; Wang, J.; Liu, J.; Chang, W.Y.B. Evolution of sedimentary environment of a Holocene river channel in east Taihu lake. Acta Palaeontol. Sin. 1996, 2, 224–233. [Google Scholar]
- Jing, C. The fresh-water lakes in the middle and lower Yangtze valley. Sci. Geogr. Sin. 1985, 5, 227–234. [Google Scholar]
- Sun, S. Does the Taihu Lake plain have Holocene transgression? Acta Oceanol. Sin. 1992, 14, 69–77. [Google Scholar]
- Liu, J.; Chang, W.Y.B. Uses of pollen profiles to show the last 12,000 years of environmental changes in the Yangtze river delta. Acta Palaeontolgica Sin. 1996, 35, 136–154. [Google Scholar]
- Yang, H.; Chen, X. Quaternary sea surface rise and fall in eastern China. Mar. Quat. Geol. 1985, 5, 59–80. [Google Scholar]
- Wang, B. Discussion on the Change of Sea Level and Coastal Line in Quaternary Period. J. Shanghai Norm. Univ. Nat. Sci. Ed. 1978, 1, 65–78. [Google Scholar]
- Zuo, S. Study on the Origin of Iron-Rich Concretions in the Holocene Silty Layer of Taihu Lake: Implication for the Origin of Taihu Lake Basin; Nanjing University: Nanjing, China, 2020. [Google Scholar]
- Lee, S.; Xu, H. XRD and TEM studies on nanophase manganese oxides in freshwater ferromanganese nodules from Green Bay, Lake Michigan. Clays Clay Miner. 2016, 64, 523–536. [Google Scholar] [CrossRef]
- Lee, S.; Shen, Z.; Xu, H. Study on nanophase iron oxyhydroxides in freshwater ferromanganese nodules from Green Bay, Lake Michigan, with implications for the adsorption of As and heavy metals. Am. Mineral. 2016, 101, 1986–1995. [Google Scholar] [CrossRef]
- Liu, H. Structural Evolution of Thermally Treated Al-Substituted Goethite and its Response of Surface Reactivit; Hefei University of Technology: Hefei, China, 2013. [Google Scholar]
- Xie, Z.; Zuo, S. The Occurrences of Taihu Lake Iron-Rich Concretions Indicate Their Formation Relating to Airburst Fallout Deposition Rather than Groundwater Colloidal Deposition. In 47th Lunar and Planetary Science Conference; Lunar and Planetary Institute: Houston, TX, USA, 2016; Abstract #2398. [Google Scholar]
- Tan, W. The Composition and Surface Chemistry Characteristics of Fe-Mn Nodules of Soils in China; Huazhong Agricultural University: Wuhan, China, 2000. [Google Scholar]
- White, G.N.; Dixon, J.B. Iron and manganese distribution in nodules from a young Texas vertisol. Soil Sci. Soc. Am. J. 1996, 60, 1254–1262. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, G. “Impact ejecta in Taihu area” revisted: Evidence from ferruginous concretions in modern sediments of Taihu Lake area. Geol. J. China Univ. 2012, 18, 379–389. [Google Scholar]
- Raiswell, R.; Fisher, Q.J. Mudrock-hosted carbonate concretions:a review of growth mechanisms and their influence on chemical isotopic composition. J. Geol. Soc. 2000, 157, 239–251. [Google Scholar] [CrossRef]
- Fisher, R.V. Proposed classification of volcaniclastic sediments and rocks. Aust. Vet. J. 1961, 72, 1409–1414. [Google Scholar] [CrossRef]
- Warme, J.E.; Kuehner, H.C. Anatomy of an anomaly: The Devonian catastrophic Alamo impact breccia of southern Nevada. Int. Geol. Rev. 1998, 40, 189–216. [Google Scholar] [CrossRef]
- Warme, J.E.; Morgan, M.; Kuehner, H.C. Impact-generated carbonate accretionary lapilli in the Late Devonian Alamo Breccia. Spec. Pap. Geol. Soc. Am. 2002, 356, 489–504. [Google Scholar]
- Pope, K.O.; Ocampo, A.C.; Fischer, A.G.; Alvarez, W.; Fouke, B.W.; Webster, C.L.; Vega, F.J.; Smit, J.; Fritsche, A.E.; Claeys, P. Chicxulub impact ejecta from Albion Island, Belize. Earth Planet. Sci. Lett. 1999, 170, 351–364. [Google Scholar] [CrossRef]
- Yancey, T.E.; Guillemette, R.N. Carbonate accretionary lapilli in distal deposits of the Chicxulub impact event. Geol. Soc. Am. Bull. 2008, 120, 1105–1118. [Google Scholar] [CrossRef]
- Chouet, B.; Hamisevicz, N.; Mcgetchin, T.R. Photoballistics of volcanic jet activity at Stromboli, Italy. J. Geophys. Res. 1974, 79, 4961–4976. [Google Scholar] [CrossRef]
- Ripepe, M.; Rossi, M.; Saccorotti, G. Image processing of explosive activity at Stromboli. J. Volcanol. Geotherm. Res. 1993, 54, 335–351. [Google Scholar] [CrossRef]
- Patrick, M. The gas content and buoyancy of Strombolian ash plumes. J. Volcanol. Geotherm. Res. 2007, 166, 1–6. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Donne, D.D.; Dehn, J.; Ripepe, M.; Worden, A.K. Volcanic plume and bomb field masses from thermal infrared camera imagery. Earth Planet. Sci. Lett. 2013, 365, 77–85. [Google Scholar] [CrossRef]
- Pope, K.O.; Ocampo, A.C.; Fischer, A.G.; Vega, F.J.; Ames, D.E.; King, D.T.; Fouke, B.W.; Wachtman, R.J.; Kletetschka, G. Chicxulub impact ejecta deposits in southern Quintana Roo, México, and central Belize. Spec. Pap. Geol. Soc. Am. 2005, 384, 171–190. [Google Scholar]
- Isabel, I.A.; Bischoff, J.L.; Gabriela, D.V.; Li, H.; Decarli, P.S.; Bunch, T.E.; Wittke, J.H.; Weaver, J.C.; Firestone, R.B.; Allen, W. Evidence from central Mexico supporting the Younger Dryas extraterrestrial impact hypothesis. Proc. Natl. Acad. Sci. USA 2012, 109, 4723–4724. [Google Scholar]
Element | 1 (Gt) | 2 (Gt) | 3 (Qtz) | 4 (Qtz) | 5 (Qtz) | 6 (Qtz) | 7 (Qtz) | 8 (Qtz) | 9 (Gt) | 10 (Gt) | 11 (Gt) | 12 (Gt) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
K2O | 0.05 | 0.06 | 0.01 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 1.05 | 0.98 | 0.99 | 1.99 |
MgO | 0.03 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.37 | 0.38 | 0.00 | 0.00 |
FeO | 71.26 | 72.43 | 1.29 | 1.47 | 1.60 | 1.33 | 1.33 | 1.30 | 60.86 | 62.66 | 58.36 | 50.51 |
CaO | 0.06 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.10 | 0.11 | 0.00 | 0.00 |
Al2O3 | 7.60 | 7.49 | 0.00 | 0.00 | 0.03 | 0.08 | 0.12 | 0.02 | 11.73 | 12.18 | 13.51 | 16.17 |
MnO | 0.14 | 0.13 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 0.17 | 0.14 | 0.09 | 0.10 |
TiO2 | 0.08 | 0.18 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.25 | 0.23 | 0.27 | 0.36 |
SiO2 | 4.15 | 2.56 | 90.52 | 95.66 | 90.98 | 90.94 | 90.73 | 92.25 | 13.00 | 14.00 | 16.28 | 20.66 |
P2O5 | 0.84 | 0.83 | 0.00 | 0.04 | 0.00 | 0.00 | 0.01 | 0.01 | 0.49 | 0.52 | 0.00 | 0.00 |
ZrO2 | 0.03 | 0.04 | ||||||||||
Total (wt.) | 84.19 | 83.76 | 91.82 | 97.17 | 92.62 | 92.35 | 92.21 | 93.66 | 88.02 | 91.19 | 89.54 | 89.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, S.; Xie, Z. Iron-Rich Spherules of Taihu Lake: Origin Hypothesis of Taihu Lake Basin in China. Minerals 2021, 11, 632. https://doi.org/10.3390/min11060632
Zuo S, Xie Z. Iron-Rich Spherules of Taihu Lake: Origin Hypothesis of Taihu Lake Basin in China. Minerals. 2021; 11(6):632. https://doi.org/10.3390/min11060632
Chicago/Turabian StyleZuo, Shuhao, and Zhidong Xie. 2021. "Iron-Rich Spherules of Taihu Lake: Origin Hypothesis of Taihu Lake Basin in China" Minerals 11, no. 6: 632. https://doi.org/10.3390/min11060632
APA StyleZuo, S., & Xie, Z. (2021). Iron-Rich Spherules of Taihu Lake: Origin Hypothesis of Taihu Lake Basin in China. Minerals, 11(6), 632. https://doi.org/10.3390/min11060632