Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = airburst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 9039 KB  
Article
Effect of Charge Eccentric Position on the Response of Reinforced Concrete Columns Under Blast Loading
by Sihao Shen, Rongyue Zheng, Wei Wang and Chenzhen Ye
Buildings 2025, 15(11), 1898; https://doi.org/10.3390/buildings15111898 - 30 May 2025
Cited by 2 | Viewed by 473
Abstract
This study investigates the failure modes and damage extent of reinforced concrete (RC) columns under the combined action of eccentric blast loading and axial compressive loading through experimental tests and numerical simulations. Field blast tests were performed using half-scaled-down models for close-in airburst [...] Read more.
This study investigates the failure modes and damage extent of reinforced concrete (RC) columns under the combined action of eccentric blast loading and axial compressive loading through experimental tests and numerical simulations. Field blast tests were performed using half-scaled-down models for close-in airburst tests. The effects of charge mass, explosive position, and axial load on the failure modes and damage levels of RC columns under close-range blast loading were investigated. Eight experimental datasets of blast overpressure were obtained, and curve fitting was performed on these data to establish an empirical formula, thereby enhancing the predictive accuracy of blast effect assessment in practical engineering scenarios. The test results indicated that when the explosive position is closer to the column base, the structural failure mode becomes closer to shear failure. To further interpret the experimental data, a detailed finite element model of RC columns was developed. Numerical simulations of RC columns were conducted using the RHT model. The rationality of the model was validated through comparison with experimental data and the SDOF method, with dynamic response analyses performed on cross-sectional dimensions, the longitudinal reinforcement ratio, the scaled distance, the explosion location, and axial compression. An empirical formula was ultimately established to predict the maximum support rotation of RC columns. Studies have shown that when the explosive position is closer to the column base, the structural failure mode approaches shear failure, and axial compression significantly increases the propensity for shear failure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 7658 KB  
Article
An Accurate Altimetry Method for High-Altitude Airburst Fuze Based on Two-Dimensional Joint Extension Characteristics
by Liwen Pan, Yao Zhang, Qianyu Wang, Shuhuan He and Xi Pan
Sensors 2025, 25(7), 2329; https://doi.org/10.3390/s25072329 - 6 Apr 2025
Viewed by 477
Abstract
Considering the challenge of precise altimetry for high-altitude airburst fuzes, this paper proposes a two-dimensional joint extension characteristic altimetry method based on an improved constant false alarm rate (CFAR) detection and an accurate feature region extraction approach. First, an improved CFAR detection method [...] Read more.
Considering the challenge of precise altimetry for high-altitude airburst fuzes, this paper proposes a two-dimensional joint extension characteristic altimetry method based on an improved constant false alarm rate (CFAR) detection and an accurate feature region extraction approach. First, an improved CFAR detection method with secondary protection windows is introduced to effectively mitigate the masking effect caused by conventional CFAR algorithms. The fuze-to-ground distance-based height measurement is achieved by leveraging the geometric relationship between the maximum and minimum slant distances and the impact angle. Then, to enhance altimetry accuracy under low signal-to-noise ratio (SNR) conditions, a 2D joint accurate altimetry approach is implemented by integrating Doppler-dimension extension characteristics with the conventional range-based method. The estimated impact angle is further refined using the proposed feature region extraction method. The final results demonstrate that for high-altitude airburst fuzes operating at burst altitudes between 70 m and 100 m, the proposed 2D joint altimetry algorithm provides more accurate and robust distance measurements. Under an SNR of −10 dB, the root mean square error (RMSE) is less than 2.38 m, with an error rate of approximately 3%. Notably, even at an SNR of −15 dB, the RMSE remains below 4.76 m, with an error rate not exceeding 5%, highlighting the robustness of the proposed method under low-SNR conditions. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

12 pages, 28842 KB  
Article
Study on the Technology and Mechanism of Cleaning Architectural Aluminum Formwork for Concrete Pouring by High Energy and High Repetition Frequency Pulsed Laser
by Kun Gao, Jinjun Xu, Yue Zhu, Zhiyan Zhang and Quansheng Zeng
Photonics 2023, 10(3), 242; https://doi.org/10.3390/photonics10030242 - 22 Feb 2023
Cited by 8 | Viewed by 2327
Abstract
In the field of construction, the surface of architectural aluminum formwork for concrete pouring will remain the concrete adhesion layer of heterogeneous composite structures. In view of the difficulty of removing the concrete adhesion layer, we studied the technology and mechanism of removing [...] Read more.
In the field of construction, the surface of architectural aluminum formwork for concrete pouring will remain the concrete adhesion layer of heterogeneous composite structures. In view of the difficulty of removing the concrete adhesion layer, we studied the technology and mechanism of removing the concrete adhesion layer by laser cleaning technology in this paper. We analyzed the composition and distribution characteristics of residual concrete on the surface of architectural aluminum formwork, set up a laser cleaning test system, carried out laser cleaning experiments on the concrete layer on the surface of architectural aluminum formwork under different storage times, and analyzed the mechanism of removing the concrete adhesion layer by laser cleaning. The experimental results showed that the residual time of concrete will affect the quality and efficiency of laser cleaning concrete residue on the surface of architectural aluminum formwork for concrete pouring. For concrete residues with short residual time, lasering can achieve efficient and high-quality cleaning. A nanosecond pulsed laser could strengthen the surface hardness of the aluminum alloy template during cleaning, which is helpful in improving the durability of the aluminum alloy template. The main mechanisms of laser cleaning to remove the concrete adhesion layer on the surface of architectural aluminum formwork is that the bubbles and water bubbles in the loose structure of concrete instantly absorb high-energy laser and make the concrete aggregate continuously air-burst. This paper provides technological and theoretical support for the application of laser cleaning technology to remove residual concrete on the surface of architectural aluminum formwork for concrete pouring in the field of construction. Full article
(This article belongs to the Special Issue Fiber Laser and Their Applications)
Show Figures

Figure 1

17 pages, 51678 KB  
Article
Iron-Rich Spherules of Taihu Lake: Origin Hypothesis of Taihu Lake Basin in China
by Shuhao Zuo and Zhidong Xie
Minerals 2021, 11(6), 632; https://doi.org/10.3390/min11060632 - 15 Jun 2021
Cited by 4 | Viewed by 3521
Abstract
In this paper, a detailed mineralogical study on iron-rich spherules in Taihu Lake was carried out, and we present a proposed impact-related origin for these iron-rich spherules. The iron-rich spherical concretions in Taihu Lake occur in a specific silty layer formed around ~7 [...] Read more.
In this paper, a detailed mineralogical study on iron-rich spherules in Taihu Lake was carried out, and we present a proposed impact-related origin for these iron-rich spherules. The iron-rich spherical concretions in Taihu Lake occur in a specific silty layer formed around ~7 ka B.P., sandwiched between an upper lacustrine deposit layer and a lower hard loess layer, and they are widely distributed and are the most abundant iron-rich concretions in that specific layer in the vicinity of Taihu Lake. The spherules are typically ~0.5 to 3 mm in diameter with a shape very similar to a spherical shape but not exactly rounded and have various apparent aerodynamic shapes, such as spherical, cone, spindle, ellipsoidal, elongated and pear-shaped morphologies. SEM imaging shows that there is no central core and no concentric layers in the spherules. Iron-rich spherical concretions are similar to accretionary lapilli and have a typical colloidal structure with abundant angular quartz grains and trace fragments of clays wrapped in fine cements that are mainly goethite with minor clays and carbon particles. The typical nodule-forming mechanism in aqueous sediments does not sufficiently explain the morphology and internal features of the iron-rich spherules of Taihu Lake, whereas the aerosol formation mechanism under the airburst impact origin hypothesis of the Taihu Lake basin may be a better explanation of the unique mineralogy of the spherules. Specifically, airburst impact plumes could be the reaction chambers of the aerosol to form the accretionary lapilli with a colloidal texture for the interior, while a dense shell and semi-plastic morphological features can form in the falling processes from higher altitudes in the plume. Full article
(This article belongs to the Special Issue 10th Anniversary of Minerals: Frontiers of Mineral Science)
Show Figures

Figure 1

15 pages, 3249 KB  
Article
Caveats to Exogenous Organic Delivery from Ablation, Dilution, and Thermal Degradation
by Chris Mehta, Anthony Perez, Glenn Thompson and Matthew A. Pasek
Life 2018, 8(2), 13; https://doi.org/10.3390/life8020013 - 12 May 2018
Cited by 16 | Viewed by 5754
Abstract
A hypothesis in prebiotic chemistry argues that organics were delivered to the early Earth in abundance by meteoritic sources. This study tests that hypothesis by measuring how the transfer of organic matter to the surface of Earth is affected by energy-dissipation processes such [...] Read more.
A hypothesis in prebiotic chemistry argues that organics were delivered to the early Earth in abundance by meteoritic sources. This study tests that hypothesis by measuring how the transfer of organic matter to the surface of Earth is affected by energy-dissipation processes such as ablation and airbursts. Exogenous delivery has been relied upon as a source of primordial material, but it must stand to reason that other avenues (i.e., hydrothermal vents, electric discharge) played a bigger role in the formation of life as we know it on Earth if exogenous material was unable to deliver significant quantities of organics. For this study, we look at various properties of meteors such as initial velocity and mass of the object, and atmospheric composition to see how meteors with different initial velocities and masses ablate. We find that large meteors do not slow down fast enough and thus impact the surface, vaporizing their components; fast meteors with low masses are vaporized during entry; and meteors with low velocities and high initial masses reach the surface. For those objects that survive to reach the surface, about 60 to >99% of the mass is lost by ablation. Large meteors that fragment are also shown to spread out over increasingly larger areas with increasing mass, and small meteors (~1 mm) are subjected to intense thermal heating, potentially degrading intrinsic organics. These findings are generally true across most atmospheric compositions. These findings provide several caveats to extraterrestrial delivery models that—while a viable point source of organics—likely did not supply as much prebiotic material as an effective endogenous production route. Full article
(This article belongs to the Special Issue Meteorites and the Origin of Life)
Show Figures

Figure 1

Back to TopTop