Compressibility and Phase Stability of Iron-Rich Ankerite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Martinez, I.; Guyot, F.; Reeder, R.J. Effects of Mg-Fe2+ substitution in calcite-structure carbonates: Thermoelastic properties. Am. Mineral. 1998, 83, 280–287. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Garbarino, G.; Chulia-Jordan, R.; Dobrowolski, M.A.; Mühle, C.; Jansen, M. Pressure-induced transformations in mineral chalcocite, Cu2S, under hydrostatic conditions. J. Alloys Compds. 2014, 610, 645–650. [Google Scholar] [CrossRef]
- Doll, K.; Schön, J.C.; Jansen, M. Global exploration of the energy landscape of solid on the ab initio level. Phys. Chem. Chem. Phys. 2007, 9, 6128–6133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria-Perez, D.; Thomson, A.; Segura, A.; Pellicer-Porres, J.; Manjon, F.J.; Cora, F.; McColl, K.; Wilson, M.; Dobson, D.; McMillan, P.F. Metastable structural transformations and pressure-induced amorphization in natural (Mg,Fe)2SiO4 olivine under static compression: A Raman spectroscopic study. Am. Mineral. 2016, 101, 1642–1650. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 2013, 75, 183. [Google Scholar] [CrossRef]
- Zhang, J.; Reeder, R.J. Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations. Am. Mineral. 1999, 84, 861–870. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Chulia-Jordan, R.; Marqueño, T.; MacLeod, S.; Popescu, C. Pressure and temperature effects on low-density Mg3Ca(CO3)4 huntite carbonate. J. Phys. Chem. C 2020, 124, 1077–1087. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Marqueño, T.; Gomis, O.; MacLeod, S.; Popescu, C. Phase stability of natural Ni0.75Mg0.22Ca0.03CO3 gaspeite mineral at high pressure and temperature. J. Phys. Chem. C 2020, 124, 19781–19792. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Crystal structure of BaCa(CO3)2 alstonite carbonate and its phase stability upon compression. ACS Earth Space Chem. 2021, 5, 1130–1139. [Google Scholar] [CrossRef]
- Ross, N.L.; Reeder, R.J. High-pressure structural study of dolomite and ankerite. Am. Mineral. 1992, 77, 412–421. [Google Scholar]
- Santillán, J.; Williams, Q.; Knittle, E. Dolomite-II: A high-pressure polymorph of CaMg(CO3)2. Geophys. Res. Lett. 2003, 30, 1054. [Google Scholar] [CrossRef]
- Solomatova, N.V.; Asimow, P.D. Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure. Am. Mineral. 2017, 102, 210–215. [Google Scholar] [CrossRef]
- Zucchini, A.; Prencipe, M.; Belmonte, D.; Comodi, P. Ab initio study of the dolomite to dolomite-II high-pressure phase transition. Eur. J. Mineral. 2017, 29, 227–238. [Google Scholar] [CrossRef]
- Solomatova, N.V.; Asimow, P.D. First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U. Phys. Chem. Miner. 2018, 45, 293–302. [Google Scholar] [CrossRef]
- Boulard, E.; Menguy, N.; Auzende, A.L.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.P.; et al. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J. Geophys. Res. 2012, 117, B02208. [Google Scholar] [CrossRef] [Green Version]
- Vennari, C.E.; Williams, Q. A novel carbon bonding environment in deep mantle high-pressure dolomite. Am. Mineral. 2018, 103, 171–174. [Google Scholar] [CrossRef]
- Navrostsky, A.; Dooley, D.; Reeder, R.; Brady, P. Calorimetric studies of the energetics of the order-disorder in the system Mg1-xFexCa(CO3)2. Am. Mineral. 1999, 84, 1622–1626. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, L.; Fei, Y.; Liu, Q. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim. Cosmochim. Acta. 2014, 143, 253–267. [Google Scholar] [CrossRef]
- Merlini, M.; Crichton, W.A.; Hanfland, M.; Gemmi, M.; Müller, H.; Kupenko, I.; Dubrovinsky, L. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. PNAS 2012, 109, 13509–13514. [Google Scholar] [CrossRef] [Green Version]
- Efthimiopoulos, I.; Jahn, S.; Kuras, A.; Schade, U.; Koch-Müller, M. Combined high-pressure and high-temperature vibrational studies of dolomite: Phase diagram and evidence of a new distorted modification. Phys. Chem. Miner. 2017, 44, 465–476. [Google Scholar] [CrossRef]
- Binck, J.; Chariton, S.; Stekiel, M.; Bayarjargal, L.; Morgenroth, W.; Millman, V.; Dubrovinsky, L.; Winkler, B. High-pressure, high-temperature phase stability of iron-poor dolomite and the structures of dolomite IIIc and dolomite-V. Phys. Earth Planet. Int. 2020, 299, 106403. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, L.; Gui, W.; Liu, J. Phase stability and vibrational properties of iron-bearing carbonates at high pressure. Minerals 2020, 10, 1142. [Google Scholar] [CrossRef]
- Lippmann, F. Sedimentary Carbonate Minerals. In Minerals, Rocks and Inorganic Materials; Springer: Berlin/Heidelberg, Germany; New York, NY, USA,, 1973. [Google Scholar]
- Beran, A.; Zemann, J. Refinement and comparison of the crystal structures of a dolomite and of an Fe-rich ankerite. TMPM Tschermaks Min. Petr. Mitt. 1977, 24, 279–286. [Google Scholar] [CrossRef]
- Davidson, P.M.; Symmes, G.H.; Cohen, B.A.; Reeder, R.J.; Lindsley, D.H. Synthesis of the new compound CaFe(CO3)2 and experimental constraints on the (Ca,Fe)CO3 join. Geochim. Cosmochim. Acta 1994, 58, 5105–5109. [Google Scholar] [CrossRef]
- Fauth, F.; Peral, I.; Popescu, C.; Knapp, M. The new material science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 2013, 28, S360. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Marqueño, T.; Ruiz-Fuertes, J.; Daisenberger, D. Oxidation of high yield strength metals tungsten and rhenium in high-pressure high-temperature experiments of carbon dioxide and carbonates. Crystals 2019, 9, 676. [Google Scholar] [CrossRef] [Green Version]
- Marqueño, T.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Chulia-Jordan, R.; Jorda, J.L.; Rey, F.; McGuire, C.; Kavner, A.; MacLeod, S.; Daisenberger, D.; et al. An ultrahigh CO2-loaded silicalite zeolite: Structural stability and physical properties at high pressures and temperatures. Inorg. Chem. 2018, 57, 6447–6455. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B Condens. Matter 2004, 70, 094112. [Google Scholar] [CrossRef] [Green Version]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional x-ray diffraction data and data exploration. High. Pressure Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Nolze, G.; Kraus, W. Powdercell 2.0 for Windows. Powd. Diffract. 1998, 13, 256–259. [Google Scholar]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, C.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef] [Green Version]
- Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surface. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzari, N.; Vanderbilt, D.; de Vita, A.; Payne, M.C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296. [Google Scholar] [CrossRef] [Green Version]
- Otero-De-La-Roza, A.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 2011, 182, 1708–1720. [Google Scholar] [CrossRef]
- Otero-De-La-Roza, A.; Abbasi-Pérez, D.; Luaña, V. Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Goldsmith, J.R.; Graf, D.L.; Witters, J.; Northrop, D.A. Studies in the system CaCO3-MgCO3-FeCO3. J. Geol. 1962, 70, 659–688. [Google Scholar] [CrossRef]
- Giordano, V.M.; Datchi, F.; Gorelli, F.A.; Bini, R. Equation of state and anharmonicity of carbon dioxide phase I up to 12 GPa and 800 K. J. Chem. Phys. 2010, 133, 144501. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Mao, Z.; Armentrout, M.; Rainey, E.; Manning, C.E.; Dera, P.; Prakapenka, V.B.; Kavner, A. Dolomite-III: A new candidate lower mantle carbonate. Geophys. Res. Lett. 2011, 38, 22303. [Google Scholar] [CrossRef] [Green Version]
- Putz, H.; Schön, J.C.; Jansen, M. Combined method for “Ab Initio” structure solution from powder diffraction data. J. Appl. Cryst. 1999, 32, 864–870.42. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Haines, J.; Amador, U.; Morán, E.; Vegas, A. Structural characterization of a new high-pressure phase of GaAsO4. Acta Cryst. B 2006, 62, 1019–1024. [Google Scholar] [CrossRef]
- Dinnebier, R.E.; Hinrichsen, B.; Lennie, A.; Jansen, M. High-pressure crystal structure of the non-linear optical compound BiB3O6 from two-dimensional powder diffraction data. Acta Cryst. B 2009, 65, 1–10. [Google Scholar] [CrossRef]
- Palaich, S.E.M.; Heffern, R.A.; Hanfland, M.; Lausi, A.; Kavner, A.; Manning, C.E.; Merlini, M. High-pressure compressibility and thermal expansion of aragonite. Am. Mineral. 2016, 101, 1651–1658. [Google Scholar] [CrossRef]
- Bindi, L.; Roberts, A.C.; Biagioni, C. The crystal structure of alstonite, BaCa(CO3)2: An extraordinary example of ‘hidden’ complex twinning in large single crystals. Miner. Magaz. 2020, 84, 699–704. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Marqueño, T.; Pellicer-Porres, J.; Chulia-Jordan, R.; MacLeod, S.; Popescu, C. Structural behavior of natural silicate–carbonate spurrite mineral, Ca5(SiO4)2(CO3), under high-pressure, high-temperature conditions. Inorg. Chem. 2018, 57, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Peña-Alvarez, M.; Chulia-Jordan, R.; Marqueño, T.; Zimmer, D.; Gutierrez-Cano, V.; MacLeod, S.; Gregoryanz, E.; Popescu, C.; et al. Post-tilleyite, a dense calcium silicate-carbonate phase. Sci. Rep. 2019, 9, 7898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weis, C.; Sternemann, C.; Cerantola, V.; Sahle, C.J.; Spiekermann, G.; Harder, M.; Forov, Y.; Kononov, A.; Sakrowski, R.; Yavas, H.; et al. Pressure driven spin transition in siderite and magnesiosiderite single crystals. Sci. Rep. 2017, 7, 16526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Pressure (GPa) | a Axis (Å) | c Axis (Å) | Unit Cell Volume (Å3) |
---|---|---|---|
0.00 | 4.8361(12) | 16.185(7) | 327.83(15) |
0.01 | 4.8262(12) | 16.174(7) | 327.18(15) |
0.26 | 4.8273(11) | 16.160(7) | 325.96(14) |
0.36 | 4.8361(11) | 16.142(7) | 325.75(14) |
0.56 | 4.8249(11) | 16.128(7) | 325.15(14) |
1.60 | 4.8171(14) | 16.043(13) | 322.39(19) |
1.75 | 4.8177(14) | 16.040(13) | 322.40(19) |
1.80 | 4.8173(14) | 16.035(13) | 322.26(19) |
2.10 | 4.8137(14) | 16.004(13) | 321.17(19) |
2.50 | 4.8111(14) | 15.957(12) | 319.86(19) |
3.10 | 4.8054(14) | 15.925(12) | 318.47(19) |
3.45 | 4.8028(14) | 15.872(12) | 317.07(19) |
4.20 | 4.7964(13) | 15.828(12) | 315.35(18) |
4.75 | 4.7917(13) | 15.769(12) | 313.56(18) |
5.50 | 4.7851(13) | 15.691(12) | 311.15(18) |
6.05 | 4.7815(13) | 15.637(12) | 309.61(18) |
6.95 | 4.7751(13) | 15.566(11) | 307.39(18) |
7.65 | 4.7698(13) | 15.498(11) | 305.35(17) |
8.3 | 4.7654(13) | 15.432(11) | 303.50(17) |
9.5 | 4.7598(13) | 15.345(11) | 301.07(17) |
9.6 | 4.7592(13) | 15.338(11) | 300.86(17) |
9.8 | 4.7591(13) | 15.328(11) | 300.66(17) |
10.3 | 4.7590(13) | 15.294(11) | 299.98(17) |
11.0 | 4.7565(13) | 15.232(11) | 298.45(17) |
12.1 | 4.7560(14) | 15.125(11) | 296.28(17) |
Atom | Atomic Coordinates | ||
---|---|---|---|
x | y | z | |
Ca | 0.3086 | 0.6672 | 0.0719 |
Fe | 0.1347 | 0.3180 | 0.4615 |
C | 0.5655 | 0.2320 | 0.3151 |
C | 0.0567 | 0.0757 | 0.8053 |
O | 0.0511 | 0.7440 | 0.3225 |
O | 0.2078 | 0.2069 | 0.9225 |
O | 0.9949 | 0.2440 | 0.1855 |
O | 0.7198 | 0.0792 | 0.4260 |
O | 0.4813 | 0.1549 | 0.1745 |
O | 0.5023 | 0.4917 | 0.3469 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuliá-Jordán, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Compressibility and Phase Stability of Iron-Rich Ankerite. Minerals 2021, 11, 607. https://doi.org/10.3390/min11060607
Chuliá-Jordán R, Santamaria-Perez D, Ruiz-Fuertes J, Otero-de-la-Roza A, Popescu C. Compressibility and Phase Stability of Iron-Rich Ankerite. Minerals. 2021; 11(6):607. https://doi.org/10.3390/min11060607
Chicago/Turabian StyleChuliá-Jordán, Raquel, David Santamaria-Perez, Javier Ruiz-Fuertes, Alberto Otero-de-la-Roza, and Catalin Popescu. 2021. "Compressibility and Phase Stability of Iron-Rich Ankerite" Minerals 11, no. 6: 607. https://doi.org/10.3390/min11060607
APA StyleChuliá-Jordán, R., Santamaria-Perez, D., Ruiz-Fuertes, J., Otero-de-la-Roza, A., & Popescu, C. (2021). Compressibility and Phase Stability of Iron-Rich Ankerite. Minerals, 11(6), 607. https://doi.org/10.3390/min11060607