Compressibility and Phase Stability of Iron-Rich Ankerite
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Details
2.2. Computational Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Martinez, I.; Guyot, F.; Reeder, R.J. Effects of Mg-Fe2+ substitution in calcite-structure carbonates: Thermoelastic properties. Am. Mineral. 1998, 83, 280–287. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Garbarino, G.; Chulia-Jordan, R.; Dobrowolski, M.A.; Mühle, C.; Jansen, M. Pressure-induced transformations in mineral chalcocite, Cu2S, under hydrostatic conditions. J. Alloys Compds. 2014, 610, 645–650. [Google Scholar] [CrossRef]
- Doll, K.; Schön, J.C.; Jansen, M. Global exploration of the energy landscape of solid on the ab initio level. Phys. Chem. Chem. Phys. 2007, 9, 6128–6133. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Perez, D.; Thomson, A.; Segura, A.; Pellicer-Porres, J.; Manjon, F.J.; Cora, F.; McColl, K.; Wilson, M.; Dobson, D.; McMillan, P.F. Metastable structural transformations and pressure-induced amorphization in natural (Mg,Fe)2SiO4 olivine under static compression: A Raman spectroscopic study. Am. Mineral. 2016, 101, 1642–1650. [Google Scholar] [CrossRef]
- Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 2013, 75, 183. [Google Scholar] [CrossRef]
- Zhang, J.; Reeder, R.J. Comparative compressibilities of calcite-structure carbonates: Deviations from empirical relations. Am. Mineral. 1999, 84, 861–870. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Chulia-Jordan, R.; Marqueño, T.; MacLeod, S.; Popescu, C. Pressure and temperature effects on low-density Mg3Ca(CO3)4 huntite carbonate. J. Phys. Chem. C 2020, 124, 1077–1087. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Otero-de-la-Roza, A.; Ruiz-Fuertes, J.; Marqueño, T.; Gomis, O.; MacLeod, S.; Popescu, C. Phase stability of natural Ni0.75Mg0.22Ca0.03CO3 gaspeite mineral at high pressure and temperature. J. Phys. Chem. C 2020, 124, 19781–19792. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Crystal structure of BaCa(CO3)2 alstonite carbonate and its phase stability upon compression. ACS Earth Space Chem. 2021, 5, 1130–1139. [Google Scholar] [CrossRef]
- Ross, N.L.; Reeder, R.J. High-pressure structural study of dolomite and ankerite. Am. Mineral. 1992, 77, 412–421. [Google Scholar]
- Santillán, J.; Williams, Q.; Knittle, E. Dolomite-II: A high-pressure polymorph of CaMg(CO3)2. Geophys. Res. Lett. 2003, 30, 1054. [Google Scholar] [CrossRef]
- Solomatova, N.V.; Asimow, P.D. Ab initio study of the structure and stability of CaMg(CO3)2 at high pressure. Am. Mineral. 2017, 102, 210–215. [Google Scholar] [CrossRef]
- Zucchini, A.; Prencipe, M.; Belmonte, D.; Comodi, P. Ab initio study of the dolomite to dolomite-II high-pressure phase transition. Eur. J. Mineral. 2017, 29, 227–238. [Google Scholar] [CrossRef]
- Solomatova, N.V.; Asimow, P.D. First-principles calculations of high-pressure iron-bearing monoclinic dolomite and single-cation carbonates with internally consistent Hubbard U. Phys. Chem. Miner. 2018, 45, 293–302. [Google Scholar] [CrossRef]
- Boulard, E.; Menguy, N.; Auzende, A.L.; Benzerara, K.; Bureau, H.; Antonangeli, D.; Corgne, A.; Morard, G.; Siebert, J.; Perrillat, J.P.; et al. Experimental investigation of the stability of Fe-rich carbonates in the lower mantle. J. Geophys. Res. 2012, 117, B02208. [Google Scholar] [CrossRef]
- Vennari, C.E.; Williams, Q. A novel carbon bonding environment in deep mantle high-pressure dolomite. Am. Mineral. 2018, 103, 171–174. [Google Scholar] [CrossRef]
- Navrostsky, A.; Dooley, D.; Reeder, R.; Brady, P. Calorimetric studies of the energetics of the order-disorder in the system Mg1-xFexCa(CO3)2. Am. Mineral. 1999, 84, 1622–1626. [Google Scholar] [CrossRef]
- Tao, R.; Zhang, L.; Fei, Y.; Liu, Q. The effect of Fe on the stability of dolomite at high pressure: Experimental study and petrological observation in eclogite from southwestern Tianshan, China. Geochim. Cosmochim. Acta. 2014, 143, 253–267. [Google Scholar] [CrossRef]
- Merlini, M.; Crichton, W.A.; Hanfland, M.; Gemmi, M.; Müller, H.; Kupenko, I.; Dubrovinsky, L. Structures of dolomite at ultrahigh pressure and their influence on the deep carbon cycle. PNAS 2012, 109, 13509–13514. [Google Scholar] [CrossRef]
- Efthimiopoulos, I.; Jahn, S.; Kuras, A.; Schade, U.; Koch-Müller, M. Combined high-pressure and high-temperature vibrational studies of dolomite: Phase diagram and evidence of a new distorted modification. Phys. Chem. Miner. 2017, 44, 465–476. [Google Scholar] [CrossRef]
- Binck, J.; Chariton, S.; Stekiel, M.; Bayarjargal, L.; Morgenroth, W.; Millman, V.; Dubrovinsky, L.; Winkler, B. High-pressure, high-temperature phase stability of iron-poor dolomite and the structures of dolomite IIIc and dolomite-V. Phys. Earth Planet. Int. 2020, 299, 106403. [Google Scholar] [CrossRef]
- Zhao, C.; Xu, L.; Gui, W.; Liu, J. Phase stability and vibrational properties of iron-bearing carbonates at high pressure. Minerals 2020, 10, 1142. [Google Scholar] [CrossRef]
- Lippmann, F. Sedimentary Carbonate Minerals. In Minerals, Rocks and Inorganic Materials; Springer: Berlin/Heidelberg, Germany; New York, NY, USA,, 1973. [Google Scholar]
- Beran, A.; Zemann, J. Refinement and comparison of the crystal structures of a dolomite and of an Fe-rich ankerite. TMPM Tschermaks Min. Petr. Mitt. 1977, 24, 279–286. [Google Scholar] [CrossRef]
- Davidson, P.M.; Symmes, G.H.; Cohen, B.A.; Reeder, R.J.; Lindsley, D.H. Synthesis of the new compound CaFe(CO3)2 and experimental constraints on the (Ca,Fe)CO3 join. Geochim. Cosmochim. Acta 1994, 58, 5105–5109. [Google Scholar] [CrossRef]
- Fauth, F.; Peral, I.; Popescu, C.; Knapp, M. The new material science powder diffraction beamline at ALBA synchrotron. Powder Diffr. 2013, 28, S360. [Google Scholar] [CrossRef]
- Chulia-Jordan, R.; Santamaria-Perez, D.; Marqueño, T.; Ruiz-Fuertes, J.; Daisenberger, D. Oxidation of high yield strength metals tungsten and rhenium in high-pressure high-temperature experiments of carbon dioxide and carbonates. Crystals 2019, 9, 676. [Google Scholar] [CrossRef]
- Marqueño, T.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Chulia-Jordan, R.; Jorda, J.L.; Rey, F.; McGuire, C.; Kavner, A.; MacLeod, S.; Daisenberger, D.; et al. An ultrahigh CO2-loaded silicalite zeolite: Structural stability and physical properties at high pressures and temperatures. Inorg. Chem. 2018, 57, 6447–6455. [Google Scholar] [CrossRef]
- Dewaele, A.; Loubeyre, P.; Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B Condens. Matter 2004, 70, 094112. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 075413. [Google Scholar] [CrossRef]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional x-ray diffraction data and data exploration. High. Pressure Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T. Unit cell refinement from powder diffraction data: The use of regression diagnostics. Mineral. Mag. 1997, 61, 65–77. [Google Scholar] [CrossRef]
- Nolze, G.; Kraus, W. Powdercell 2.0 for Windows. Powd. Diffract. 1998, 13, 256–259. [Google Scholar]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, C.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter. 2017, 29, 465901. [Google Scholar] [CrossRef]
- Dal Corso, A. Pseudopotentials periodic table: From H to Pu. Comput. Mater. Sci. 2014, 95, 337–350. [Google Scholar] [CrossRef]
- Perdew, J.P.; Ruzsinszky, A.; Csonka, G.; Vydrov, O.A.; Scuseria, G.E.; Constantin, L.A.; Zhou, X.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surface. Phys. Rev. Lett. 2008, 100, 136406. [Google Scholar] [CrossRef] [PubMed]
- Marzari, N.; Vanderbilt, D.; de Vita, A.; Payne, M.C. Thermal contraction and disordering of the Al(110) surface. Phys. Rev. Lett. 1999, 82, 3296. [Google Scholar] [CrossRef]
- Otero-De-La-Roza, A.; Luaña, V. Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun. 2011, 182, 1708–1720. [Google Scholar] [CrossRef]
- Otero-De-La-Roza, A.; Abbasi-Pérez, D.; Luaña, V. Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 2011, 182, 2232–2248. [Google Scholar] [CrossRef]
- Goldsmith, J.R.; Graf, D.L.; Witters, J.; Northrop, D.A. Studies in the system CaCO3-MgCO3-FeCO3. J. Geol. 1962, 70, 659–688. [Google Scholar] [CrossRef]
- Giordano, V.M.; Datchi, F.; Gorelli, F.A.; Bini, R. Equation of state and anharmonicity of carbon dioxide phase I up to 12 GPa and 800 K. J. Chem. Phys. 2010, 133, 144501. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Finite elastic strain of cubic crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Mao, Z.; Armentrout, M.; Rainey, E.; Manning, C.E.; Dera, P.; Prakapenka, V.B.; Kavner, A. Dolomite-III: A new candidate lower mantle carbonate. Geophys. Res. Lett. 2011, 38, 22303. [Google Scholar] [CrossRef]
- Putz, H.; Schön, J.C.; Jansen, M. Combined method for “Ab Initio” structure solution from powder diffraction data. J. Appl. Cryst. 1999, 32, 864–870.42. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Haines, J.; Amador, U.; Morán, E.; Vegas, A. Structural characterization of a new high-pressure phase of GaAsO4. Acta Cryst. B 2006, 62, 1019–1024. [Google Scholar] [CrossRef]
- Dinnebier, R.E.; Hinrichsen, B.; Lennie, A.; Jansen, M. High-pressure crystal structure of the non-linear optical compound BiB3O6 from two-dimensional powder diffraction data. Acta Cryst. B 2009, 65, 1–10. [Google Scholar] [CrossRef]
- Palaich, S.E.M.; Heffern, R.A.; Hanfland, M.; Lausi, A.; Kavner, A.; Manning, C.E.; Merlini, M. High-pressure compressibility and thermal expansion of aragonite. Am. Mineral. 2016, 101, 1651–1658. [Google Scholar] [CrossRef]
- Bindi, L.; Roberts, A.C.; Biagioni, C. The crystal structure of alstonite, BaCa(CO3)2: An extraordinary example of ‘hidden’ complex twinning in large single crystals. Miner. Magaz. 2020, 84, 699–704. [Google Scholar] [CrossRef]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Marqueño, T.; Pellicer-Porres, J.; Chulia-Jordan, R.; MacLeod, S.; Popescu, C. Structural behavior of natural silicate–carbonate spurrite mineral, Ca5(SiO4)2(CO3), under high-pressure, high-temperature conditions. Inorg. Chem. 2018, 57, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Santamaria-Perez, D.; Ruiz-Fuertes, J.; Peña-Alvarez, M.; Chulia-Jordan, R.; Marqueño, T.; Zimmer, D.; Gutierrez-Cano, V.; MacLeod, S.; Gregoryanz, E.; Popescu, C.; et al. Post-tilleyite, a dense calcium silicate-carbonate phase. Sci. Rep. 2019, 9, 7898. [Google Scholar] [CrossRef] [PubMed]
- Weis, C.; Sternemann, C.; Cerantola, V.; Sahle, C.J.; Spiekermann, G.; Harder, M.; Forov, Y.; Kononov, A.; Sakrowski, R.; Yavas, H.; et al. Pressure driven spin transition in siderite and magnesiosiderite single crystals. Sci. Rep. 2017, 7, 16526. [Google Scholar] [CrossRef] [PubMed]
Pressure (GPa) | a Axis (Å) | c Axis (Å) | Unit Cell Volume (Å3) |
---|---|---|---|
0.00 | 4.8361(12) | 16.185(7) | 327.83(15) |
0.01 | 4.8262(12) | 16.174(7) | 327.18(15) |
0.26 | 4.8273(11) | 16.160(7) | 325.96(14) |
0.36 | 4.8361(11) | 16.142(7) | 325.75(14) |
0.56 | 4.8249(11) | 16.128(7) | 325.15(14) |
1.60 | 4.8171(14) | 16.043(13) | 322.39(19) |
1.75 | 4.8177(14) | 16.040(13) | 322.40(19) |
1.80 | 4.8173(14) | 16.035(13) | 322.26(19) |
2.10 | 4.8137(14) | 16.004(13) | 321.17(19) |
2.50 | 4.8111(14) | 15.957(12) | 319.86(19) |
3.10 | 4.8054(14) | 15.925(12) | 318.47(19) |
3.45 | 4.8028(14) | 15.872(12) | 317.07(19) |
4.20 | 4.7964(13) | 15.828(12) | 315.35(18) |
4.75 | 4.7917(13) | 15.769(12) | 313.56(18) |
5.50 | 4.7851(13) | 15.691(12) | 311.15(18) |
6.05 | 4.7815(13) | 15.637(12) | 309.61(18) |
6.95 | 4.7751(13) | 15.566(11) | 307.39(18) |
7.65 | 4.7698(13) | 15.498(11) | 305.35(17) |
8.3 | 4.7654(13) | 15.432(11) | 303.50(17) |
9.5 | 4.7598(13) | 15.345(11) | 301.07(17) |
9.6 | 4.7592(13) | 15.338(11) | 300.86(17) |
9.8 | 4.7591(13) | 15.328(11) | 300.66(17) |
10.3 | 4.7590(13) | 15.294(11) | 299.98(17) |
11.0 | 4.7565(13) | 15.232(11) | 298.45(17) |
12.1 | 4.7560(14) | 15.125(11) | 296.28(17) |
Atom | Atomic Coordinates | ||
---|---|---|---|
x | y | z | |
Ca | 0.3086 | 0.6672 | 0.0719 |
Fe | 0.1347 | 0.3180 | 0.4615 |
C | 0.5655 | 0.2320 | 0.3151 |
C | 0.0567 | 0.0757 | 0.8053 |
O | 0.0511 | 0.7440 | 0.3225 |
O | 0.2078 | 0.2069 | 0.9225 |
O | 0.9949 | 0.2440 | 0.1855 |
O | 0.7198 | 0.0792 | 0.4260 |
O | 0.4813 | 0.1549 | 0.1745 |
O | 0.5023 | 0.4917 | 0.3469 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuliá-Jordán, R.; Santamaria-Perez, D.; Ruiz-Fuertes, J.; Otero-de-la-Roza, A.; Popescu, C. Compressibility and Phase Stability of Iron-Rich Ankerite. Minerals 2021, 11, 607. https://doi.org/10.3390/min11060607
Chuliá-Jordán R, Santamaria-Perez D, Ruiz-Fuertes J, Otero-de-la-Roza A, Popescu C. Compressibility and Phase Stability of Iron-Rich Ankerite. Minerals. 2021; 11(6):607. https://doi.org/10.3390/min11060607
Chicago/Turabian StyleChuliá-Jordán, Raquel, David Santamaria-Perez, Javier Ruiz-Fuertes, Alberto Otero-de-la-Roza, and Catalin Popescu. 2021. "Compressibility and Phase Stability of Iron-Rich Ankerite" Minerals 11, no. 6: 607. https://doi.org/10.3390/min11060607
APA StyleChuliá-Jordán, R., Santamaria-Perez, D., Ruiz-Fuertes, J., Otero-de-la-Roza, A., & Popescu, C. (2021). Compressibility and Phase Stability of Iron-Rich Ankerite. Minerals, 11(6), 607. https://doi.org/10.3390/min11060607