Use of Decision Trees for the Development of Decision Support Systems for the Control of Grinding Circuits
Abstract
:1. Introduction
2. Knowledge Discovery for Grinding Circuit Control
3. Methodology
3.1. Classification and Regression Trees
3.2. Evaluating the Utility of Decision Rules
3.2.1. Supporting Samples in the Dataset
3.2.2. Rule Accuracy
3.2.3. Complexity and Rule Interpretability
3.3. Decision Rule Extraction Procedure
3.3.1. Data Acquisition and Exploration
3.3.2. Model Specification and Tree Induction
3.3.3. Rule Extraction and Evaluation
4. Case Study
4.1. SAG Circuit Description
4.2. Modelling Problem Description
4.3. Raw SAG Circuit Data Exploration
4.4. Random Forest Classification Model
4.5. Decision Tree Induction and Simplification
4.6. Extracting and Evaluating Decision Rules
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fuerstenau, D.W.; Abouzeid, A.Z. The energy efficiency of ball milling in comminution. Int. J. Miner. Process. 2002, 67, 161–185. [Google Scholar] [CrossRef]
- Napier-Munn, T. Is progress in energy-efficient comminution doomed? Miner. Eng. 2015, 73, 1–6. [Google Scholar] [CrossRef]
- Napier-Munn, T.J.; Morrell, S.; Robert, D.; Kojovic, T. Mineral Comminution Circuits: Their Operation and Optimisation; Julius Kruttschnitt Mineral Research Centre; University of Queensland; Indooroopilly, Australia, 1996. [Google Scholar]
- Wei, D.; Craig, I.K. Grinding mill circuits—A survey of control and economic concerns. Int. J. Miner. Process. 2009, 90, 56–66. [Google Scholar] [CrossRef]
- Zhou, P.; Lu, S.; Yuan, M.; Chai, T. Survey on higher-level advanced control for grinding circuits operation. Powder Technol. 2016, 288, 324–338. [Google Scholar] [CrossRef]
- Chen, X.S.; Li, Q.; Fei, S.M. Supervisory expert control for ball mill grinding circuits. Expert Syst. Appl. 2008, 34, 1877–1885. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Zhai, J.; Li, Q. Expert system based adaptive dynamic matrix control for ball mill grinding circuit. Expert Syst. Appl. 2009, 36, 716–723. [Google Scholar] [CrossRef]
- Van Drunick, W.I.; Penny, B. Expert mill control at AngloGold Ashanti. J. S. Afr. I. Min. Metall. 2005, 105, 497–506. [Google Scholar]
- Hadizadeh, M.; Farzanegan, A.; Noaparast, M. A plant-scale validated MATLAB-based fuzzy expert system to control SAG mill circuits. J. Process Control. 2018, 70, 1–11. [Google Scholar] [CrossRef]
- Le Roux, J.D.; Padhi, R.; Craig, I.K. Optimal control of grinding mill circuit using model predictive static programming: A new nonlinear MPC paradigm. J. Process Control. 2014, 24, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Botha, S.; le Roux, J.D.; Craig, I.K. Hybrid non-linear model predictive control of a run-of-mine ore grinding mill circuit. Miner. Eng. 2018, 123, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Olivier, L.E.; Craig, I.K. A survey on the degree of automation in the mineral processing industry. In Proceedings of the 2017 IEEE AFRICON, Cape Town, South Africa, 18–20 September 2017; pp. 404–409. [Google Scholar] [CrossRef]
- Ackoff, R.L. From Data to Wisdom. J. Appl. Syst. Anal. 1989, 16, 3–9. [Google Scholar] [CrossRef]
- Fayyad, U.; Piatetsky-Shapiro, G.; Smyth, P. The KDD Process for Extracting Useful Knowledge from Volumes of Data. Commun. ACM. 1996, 39, 27–34. [Google Scholar] [CrossRef]
- Johannsen, G.; Alty, J.L. Knowledge engineering for industrial expert systems. Automatica 1991, 27, 97–114. [Google Scholar] [CrossRef]
- Sloan, R.; Parker, S.; Craven, J.; Schaffer, M. Expert systems on SAG circuits: Three comparative case studies. In Proceedings of the Third International Conference on Autogenous and Semiautogenous Grinding Technology, Vancouver, BC, Canada, 30 September–3 October 2001. [Google Scholar] [CrossRef]
- Bandaru, S.; Ng, A.H.C.; Deb, K. Data mining methods for knowledge discovery in multi-objective optimization: Part A—Survey. Expert Syst. Appl. 2017, 70, 139–159. [Google Scholar] [CrossRef] [Green Version]
- Stange, W. Using artificial neural networks for the control of grinding circuits. Miner. Eng. 1993, 6, 479–489. [Google Scholar] [CrossRef]
- Chai, T.; Zhai, L.; Yue, H. Multiple models and neural networks based decoupling control of ball mill coal-pulverizing systems. J. Process Control. 2011, 21, 351–366. [Google Scholar] [CrossRef]
- Aldrich, C.; Burchell, J.J.; De, J.W.; Yzelle, C. Visualization of the controller states of an autogenous mill from time series data. Miner. Eng. 2014, 56, 1–9. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, J.; Yu, W.; Yue, H.; Chai, T. Modelling of mill load for wet ball mill via GA and SVM based on spectral feature. In Proceedings of the IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA), Changsha, China, 23–26 September 2010. [Google Scholar] [CrossRef]
- Jemwa, G.T.; Aldrich, C. Kernel-based fault diagnosis on mineral processing plants. Miner. Eng. 2006, 19, 1149–1162. [Google Scholar] [CrossRef]
- Valenzuela, J.; Najim, K.; del Villar, R.; Bourassa, M. Learning control of an autogenous grinding circuit. Int. J. Miner. Process. 1993, 40, 45–56. [Google Scholar] [CrossRef]
- Conradie, A.V.E.; Aldrich, C. Neurocontrol of a ball mill grinding circuit using evolutionary reinforcement learning. Miner. Eng. 2001, 14, 1277–1294. [Google Scholar] [CrossRef]
- Zhou, P.; Chai, T.; Sun, J. Intelligence-based supervisory control for optimal operation of a DCS-controlled grinding system. IEEE Trans. Control Syst. Technol. 2013, 21, 162–175. [Google Scholar] [CrossRef]
- Gouws, F.S.; Aldrich, C. Rule-based characterization of industrial flotation processes with inductive techniques and genetic algorithms. Ind. Eng. Chem. Res. 1996, 35, 4119–4127. [Google Scholar] [CrossRef]
- Greeff, D.J.; Aldrich, C. Development of an empirical model of a nickeliferous chromite leaching system by means of genetic programming. J. S. Afr. I. Min. Metall. 1998, 98, 193–199. [Google Scholar]
- Chemaly, T.P.; Aldrich, C. Visualization of process data by use of evolutionary computation. Comput. Chem. Eng. 2001, 25, 1341–1349. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, C.-G.; Wang, F.; Wang, W. Rough sets and its application in cation anti-flotation control. IFAC Proc. Vol. 2003, 36, 293–297. [Google Scholar] [CrossRef]
- Aldrich, C.; Moolman, D.W.; Gouws, F.S.; Schmitz, G.P.J. Machine learning strategies for control of flotation plants. Control Eng. Pract. 1997, 5, 263–269. [Google Scholar] [CrossRef]
- Schmitz, G.P.J.; Aldrich, C.; Gouws, F.S. ANN-DT: An algorithm for extraction of decision trees from artificial neural networks. IEEE Trans. Neural Netw. 1999, 10, 1392–1401. [Google Scholar] [CrossRef]
- Hayashi, Y.; Setiono, R.; Azcarraga, A. Neural network training and rule extraction with augmented discretized input. Neurocomputing 2016, 207, 610–622. [Google Scholar] [CrossRef]
- Zeng, Q.; Huang, H.; Pei, X.; Wong, S.C.; Gao, M. Rule extraction from an optimized neural network for traffic crash frequency modeling. Accid. Anal. Prev. 2016, 97, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Bondarenko, A.; Aleksejeva, L.; Jumutc, V.; Borisov, A. Classification Tree Extraction from Trained Artificial Neural Networks. Procedia Comput. Sci. 2016, 104, 556–563. [Google Scholar] [CrossRef]
- Saraiva, P.M.; Stephanopoulos, G. Continuous process improvement through inductive and analogical learning. AIChE J. 1992, 38, 161–183. [Google Scholar] [CrossRef]
- Leech, W.J. A rule-based process control method with feedback. Adv. Instrum. 1986, 41, 169–175. [Google Scholar]
- Reuter, M.A.; Moolman, D.W.; Van Zyl, F.; Rennie, M.S. Generic Metallurgical Quality Control Methodology for Furnaces on the Basis of Thermodynamics and Dynamic System Identification Techniques. IFAC Proc. Vol. 1998, 31, 363–368. [Google Scholar] [CrossRef]
- Eom, S.B.; Lee, S.M.; Kim, E.B.; Somarajan, C. A survey of decision support system applications (1988–1994). J. Oper. Res. Soc. 1998, 49, 109–120. [Google Scholar] [CrossRef]
- Eom, S.; Kim, E. A survey of decision support system applications (1995–2001). J. Oper. Res. Soc. 2006, 57, 1264–1278. [Google Scholar] [CrossRef] [Green Version]
- Weiss, S.M.; Indurkhya, N. Optimized Rule Induction. IEEE Expert 1993, 8, 61–69. [Google Scholar] [CrossRef]
- Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data—SIGMOD ’93, Washington, DC, USA, 26–28 May 1993; pp. 207–216. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News. 2002, 2, 18–22. [Google Scholar]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Wadsworth Int. Group: Monterey, CA, USA, 1984. [Google Scholar]
- Auret, L.; Aldrich, C. Interpretation of nonlinear relationships between process variables by use of random forests. Miner. Eng. 2012, 35, 27–42. [Google Scholar] [CrossRef]
- Li, X.; McKee, D.J.; Horberry, T.; Powell, M.S. The control room operator: The forgotten element in mineral process control. Miner. Eng. 2011, 24, 894–902. [Google Scholar] [CrossRef]
Rule 1 | Rule 2 | Rule 3 | Rule 4 | Rule 5 |
---|---|---|---|---|
If (X1 < C1), then (Class = 1) | If (X1 >= C1), and (X2 >= C2), then (Class = 2) | If (X1 >= C1), and (X2 < C2), and (X3 >= C3), and (X4 >= C4), then (Class = 3) | If (X1 >= C1), and (X2 < C2), and (X3 >= C3), and (X4 < C4), then (Class = 2) | If (X1 >= C1), and (X2 < C2), and (X3 < C3), then (Class = 4) |
Name | Description | Unit |
---|---|---|
Mill power draw | kW | |
Dry feed rate | Tonnes/hour | |
Pebble discharge rate | Tonnes/hour | |
Pebble returns rate | Tonnes/hour | |
Water addition rate | m3/hour | |
Cyclone Pressure | kPa | |
Pebble circuit bypass | Binary control variable |
Inputs | Output |
---|---|
Parameter | Value |
---|---|
Maximum number of trees | 50 |
Number of predictors sampled at each split | |
Minimum leaf size | 1 |
Misclassification costs | Table 5 |
Predicted Class | |||
---|---|---|---|
0 | 1 | ||
True Class | 0 | 0 | 1 |
1 | 20 | 0 |
Predicted Class | |||
---|---|---|---|
0 | 1 | ||
True Class | 0 | 1805 | 15 |
1 | 35 | 52 |
Parameter | Value |
---|---|
Minimum parent node size | 10 |
Minimum leaf size | 1 |
Number of predictors sampled at each split | |
Misclassification costs | Table 5 |
Confusion Matrix | Predicted Class | ||
---|---|---|---|
0 | 1 | ||
True class | 0 | 1616 | 204 |
1 | 29 | 58 |
Number | Rule |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 |
Number | Supporting Samples (% of Dataset) | Accuracy (Probability of Predicted Class) | Number of Splits |
---|---|---|---|
1 | 1.45 | 1.000 | 3 |
2 | 2.24 | 0.246 | 3 |
3 | 0.48 | 0.189 | 2 |
4 | 9.82 | 0.988 | 4 |
5 | 5.79 | 0.360 | 2 |
6 | 2.35 | 0.196 | 2 |
7 | 6.21 | 0.970 | 2 |
8 | 68.17 | 0.989 | 3 |
9 | 3.49 | 0.102 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivier, J.; Aldrich, C. Use of Decision Trees for the Development of Decision Support Systems for the Control of Grinding Circuits. Minerals 2021, 11, 595. https://doi.org/10.3390/min11060595
Olivier J, Aldrich C. Use of Decision Trees for the Development of Decision Support Systems for the Control of Grinding Circuits. Minerals. 2021; 11(6):595. https://doi.org/10.3390/min11060595
Chicago/Turabian StyleOlivier, Jacques, and Chris Aldrich. 2021. "Use of Decision Trees for the Development of Decision Support Systems for the Control of Grinding Circuits" Minerals 11, no. 6: 595. https://doi.org/10.3390/min11060595
APA StyleOlivier, J., & Aldrich, C. (2021). Use of Decision Trees for the Development of Decision Support Systems for the Control of Grinding Circuits. Minerals, 11(6), 595. https://doi.org/10.3390/min11060595