Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland
Abstract
:1. Introduction
2. Geological Setting and Sampling
3. Analytical Techniques
3.1. Microscopy
3.2. Electron Probe Micro-Analyses (EPMA)
3.3. Whole-Rock Chemical and Isotope Analyses
3.4. Mineral Separation and Imaging
3.5. LA-ICP-MS U-Pb Dating
3.5.1. U-Pb Zircon Dating
3.5.2. U-Pb Apatite Dating
4. Results
4.1. Petrography, Mineral Chemistry and Whole-Rock Chemistry of Exotic Blocks
4.1.1. Microgranite
4.1.2. Andesite
4.2. Zircon and Apatite Characteristics and U-Pb Dating
4.2.1. Microgranitoid
4.2.2. Andesite
5. Discussion
5.1. Petrogenetic Interpretation
5.2. Implications for Paleozoic Paleogeology
5.3. Implications for Cretaceous–Paleogene Paleogeology
6. Conclusions
- Exotic blocks of Late Carboniferous–Permian magmatic rocks are found in Campanian–Maastrichtian grey marls of the Subsilesian Nappe. This magmatic activity is also found outside the Carpathian Belt and can be linked to a Late Paleozoic transtensional zone, which is a continuation of the Lubliniec–Kraków Zone that extends under the Carpathians to Moesia.
- This Late Paleozoic transtensional zone was probably reactivated during the Late Cretaceous under a transpressional regime within the Żegocina tectonic zone, which caused the uplift of the Subsilesian Ridge and intensive erosion.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Von Raumer, J.F.; Neubauer, F. History of Geological Investigations in the Pre-Triassic Basement of the Alps. In Pre-Mesozoic Geology in the Alps; Springer Science and Business Media LLC: Berlin, Germany, 1993; pp. 55–63. [Google Scholar] [CrossRef]
- Von Raumer, J.F.; Bussy, F.; Schaltegger, U.; Schulz, B.; Stampfli, G.M. Pre-Mesozoic Alpine basements—Their place in the European Paleozoic framework. GSA Bull. 2013, 125, 89–108. [Google Scholar] [CrossRef]
- Golonka, J.; Gawęda, A.; Waśkowska, A. Carpathians. In Encyclopedia of Geology, 2nd ed.; Alderon, D., Elias, S.A., Eds.; Elsevier BV: Amsterdam, The Netherlands, 2021; pp. 372–381. [Google Scholar] [CrossRef]
- Golonka, J.; Ślączka, A.; Waśkowska, A.; Krobicki, M.; Cieszkowski, M. Budowa geologiczna zachodniej części polskich Karpat zewnętrznych. In Głębokomorska Sedymentacja Fliszowa—Sedymentologiczne Aspekty Historii Basenów Karpackich; Krobicki, M., Feldman-Olszewska, A., Eds.; V Polska konferencja Sedymentologiczna: Warsaw, Poland, 2013; pp. 11–62. (In Polish) [Google Scholar]
- Gawęda, A.; Golonka, J.; Waśkowska, A.; Szopa, K.; Chew, D.; Starzec, K.; Wieczorek, A. Neoproterozoic crystalline exotic clasts in the Polish Outer Carpathian flysch: Remnants of the Proto-Carpathian continent? Int. J. Earth Sci. 2019, 108, 1409–1427. [Google Scholar] [CrossRef] [Green Version]
- Książkiewicz, M. Bathymetry of the Carpathian flysch basin. Acta Geol. Pol. 1975, 25, 309–368. [Google Scholar]
- Cieszkowski, M.; Golonka, J.; Ślączka, A.; Waśkowska, A. Role of the olistostromes and olistoliths in tectonostratigraphic evolution of the Silesian Basin in the Outer West Carpathians. Tectonophysics 2012, 568, 248–265. [Google Scholar] [CrossRef]
- Żytko, K.; Zając, R.; Gucik, S.; Ryłko, W.; Oszczypko, N.; Garlicka, I.; Nemčok, J.; Eliáš, M.; Menčik, E.; Stránik, Z. Map of the tectonic elements of the Western Outer Carpathians and their foreland. In Geological Atlas of the Western Outer Carpathians and their Foreland; Poprawa, D., Nemčok, J., Eds.; Państwowy Instytut Geologiczny: Warsaw, Poland, 1989. [Google Scholar]
- Wójcik, A.; Czerwiec, J.; Krawczyk, M. Detailed Geological Map of Poland, 1:50,000 Scale, Limanowa Sheet; Państwowy Instytut Geologiczny-Państwowy Instytut Badawczy: Warsaw, Poland, 2009.
- Plašienka, D.; Grecula, P.; Putiš, M.; Hovorka, D.; Kováč, M. Evolution and structure of the Western Carpathians: An overview. In Geological Evolution of the Western Carpathians; Grecula, P., Hovorka., D., Putiš, M., Eds.; Mineralia Slovaca—Monograph: Bratislava, Slovakia, 1997; pp. 1–24. [Google Scholar]
- Golonka, J.; Krobicki, M.; Matyszkiewicz, J.; Olszewska, B.; Ślączka, A.; Słomka, T. Geodynamics of ridges and development of carbonate platform within the Carpathian realm in Poland. Slovak Geol. Mag. 2005, 11, 5–16. [Google Scholar]
- Ślączka, A.; Kruglow, S.; Golonka, J.; Oszczypko, N.; Popadyuk, I. The general geology of the Outer Carpathians, Poland, Slovakia, and Ukraine. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources; Golonka, J., Picha, F., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2006; pp. 221–258. [Google Scholar]
- Budzyń, B.; Dunkley, D.J.; Kusiak, M.A.; Poprawa, P.; Malata, T.; Skiba, M.; Paszkowski, M. SHRIMP U-Pb zircon chronology of the Polish Western Outer Carpathians source areas. Ann. Soc. Geol. Pol. 2011, 81, 161–171. [Google Scholar]
- Burda, J.; Woskowicz-Ślęzak, B.; Klötzli, U.; Gawęda, A. Cadomian protolith ages of exotic mega blocks from Bugaj and Andrychów (Western outer Carpathians, Poland) and their palaeogeographic significance. Geochronometria 2019, 46, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Gawęda, A.; Golonka, J.; Chew, D.; Waśkowska, A.; Szopa, K. Central European Variscan Basement in the Outer Carpathians: A Case Study from the Magura Nappe, Outer Western Carpathians, Poland. Minerals 2021, 11, 256. [Google Scholar] [CrossRef]
- Skoczylas-Ciszewska, K. Budowa geologiczna strefy żegocińskiej. Acta Geol. Pol. 1960, 10, 484–592. [Google Scholar]
- Cieszkowski, M.; Golonka, J.; Waśkowska-Oliwa, A. Tectonics and tectonic evolutionary stages of the Subsilesian Realm, Outer Carpathians. In Proceedings of the 18th Congress of the Carpathian-Balkan Geological Association: Scientific Annals of the School of Geology, Belgrade, Serbia, 3–6 September 2006; Volume 100, pp. 72–74. [Google Scholar]
- Golonka, J.; Waśkowska, A.; Ślączka, A. The Western Outer Carpathians: Origin and evolution. Z. Dtsch. Ges. Geowiss. Ger. J. Geol. 2019, 170, 229–254. [Google Scholar] [CrossRef]
- Skoczylas-Ciszewska, K. O występowaniu tzw. andezytów w strefie żegocińskiej Karpat fliszowych. Zesz. Nauk. Agh. 1956, 9, 143–154. (In Polish) [Google Scholar]
- McDonough, W.F.; Sun, S.-S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanalytical Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot/Ex, v. 4.75; Berkeley Geochronology Center Special Publication: Berkeley, CA, USA, 2012; p. 5. [Google Scholar]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further characterization of the 91500 zircon crystal. Geostand. Geoanalytical Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Nasdala, L.; Corfu, F.; Schoene, B.; Tapster, S.R.; Wall, C.J.; Schmitz, M.D.; Ovtcharova, M.; Schaltegger, U.; Kennedy, A.K.; Kronz, A.; et al. GZ7 and GZ8—Two Zircon Reference Materials for SIMS U-Pb Geochronology. Geostand. Geoanalytical Res. 2018, 42, 431–457. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Schaltegger, U. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Pointon, M.A.; Cliff, R.A.; Chew, D.M. The provenance of Western Irish Namurian Basin sedimentary strata inferred using detrital zircon U-Pb LA-ICP-MS geochronology. Geol. J. 2011, 47, 77–98. [Google Scholar] [CrossRef]
- Chew, D.M.; Donelick, R.A. Combined apatite fission track and U-Pb dating by LAICPMS and future trends in apatite provenance analysis. In Quantitative Mineralogy and Microanalysis of Sediments and Sedimentary Rocks; Sylvester, P., Ed.; Mineralogical Association of Canada: Québec, QC, Canada, 2012; pp. 219–248. [Google Scholar]
- Schoene, B.; Bowring, S.A. U–Pb systematics of the McClure Mountain syenite: Thermochronological constraints on the age of the Ar-40/Ar-39 standard MMhb. Contrib. Miner. Pet. 2006, 151, 615–630. [Google Scholar] [CrossRef]
- Chew, D.M.; Babechuk, M.G.; Cogne, N.; Mark, C.; O’Sullivan, G.J.; Henrichs, I.A.; Doepke, D.; McKenna, C.A. (LA,Q)-ICPMS trace-element analyses of Durango and McClure Mountain apatite and implications for making natural LA-ICPMS mineral standards. Chem. Geol. 2016, 435, 35–48. [Google Scholar] [CrossRef]
- McDowell, F.W.; McIntosh, W.C.; Farley, K.A. A precise 40Ar–39Ar reference age for the Durango apatite (U–Th)/He and fission-track dating standard. Chem. Geol. 2005, 214, 249–263. [Google Scholar] [CrossRef]
- Fuhrman, M.L.; Lindsley, D.H. Ternary feldspars modelling and thermometry. Am. Min. 1988, 73, 201–215. [Google Scholar]
- Peccerillo, A.; Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib. Miner. Pet. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Pearce, J.A.; Harris, N.B.W.; Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol. 1984, 25, 956–983. [Google Scholar] [CrossRef] [Green Version]
- Winchester, J.; Floyd, P. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Mikulski, S.Z.; Williams, I.S.; Markowiak, M. Carboniferous–Permian magmatism and Mo–Cu (W) mineralization in the contact zone between the Małopolska and Upper Silesia Blocks (south Poland): An echo of the Baltica–Gondwana collision. Int. J. Earth Sci. 2019, 108, 1467–1492. [Google Scholar] [CrossRef] [Green Version]
- Parys, A. Petrogeneza i Wiek U-Pb Egzotyku Andezytowego z Pluskawki, Płaszczowina Podśląska; Karpaty Zewnętrzne. Master’s Thesis, University of Silesia in Katowice, Katowice, Poland, 2020. [Google Scholar]
- O’Sullivan, G.; Chew, D.; Kenny, G.; Henrichs, I.; Mulligan, D. The trace element composition of apatite and its application to detrital provenance studies. Earth Sci. Rev. 2020, 201, 103044. [Google Scholar] [CrossRef]
- Moyen, J.F.; Laurent, O.; Chelle-Michou, C.; Couzinié, S.; Vanderhaege, O.; Zeh, A.; Villaros, A.; Gardien, V. Collision vs. subduction-related magmatism: Two contrasting ways of granite formation and implications for crustal growth. Lithos 2017, 277, 154–177. [Google Scholar] [CrossRef] [Green Version]
- Słaby, E.; Breitkreuz, C.; Żaba, J.; Domańska-Siuda, J.; Gaidzik, K.; Falenty, K.; Falenty, A. Magma generation in an alternating transtensional–transpressional regime, the Kraków–Lubliniec Fault Zone, Poland. Lithos 2010, 119, 251–268. [Google Scholar] [CrossRef]
- Żaba, J. The structural evolution of Lower Palaeozoic succession in the Upper Silesia Block and Małopolska Block border zone, southern Poland. Int. J. Earth Sci. 1999, 166, 1–162. [Google Scholar]
- Seghedi, A.; Vaida, M.; Iordan, M.; Verniers, J. Paleozoic evolution of the Romanian part of the Moesian Platform: An overview. Geol. Belg. 2005, 8, 99–120. [Google Scholar]
- Buła, Z.; Jachowicz, M.; Żaba, J. Principal characteristic of the upper Silesian block and Malopolska Block border zone (southern Poland). Geol. Mag. 1999, 134, 669–677. [Google Scholar] [CrossRef]
- Kalvoda, J. Upper Devonian–Lower Carboniferous foraminiferal paleobiogeography and Perigondwana terranes at the Baltica–Gondwana interface. Geol. Carp. 2001, 52, 205–215. [Google Scholar]
- Mazur, S.; Aleksandrowski, P.; Gągała, Ł.; Krzywiec, P.; Żaba, J.; Gaidzik, K.; Sikora, R. Late Palaeozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: Case of the Variscan belt’s eastern end in Poland. Acta Diabetol. 2020, 109, 1133–1160. [Google Scholar] [CrossRef] [Green Version]
- Poprawa, P.; Jarosinski, M.; Pepel, A.; Kiersnowski, H.; Jawor, E. Tectonic evolution of the Liplas-Tarnawa area—Analysis of subsidence, mesostructures, seismic and gravimetric data. Int. J. Earth Sci. 2001, 174, 143–160. [Google Scholar]
- Kalvoda, J.; Babek, O.; Fatka, O.; Leichmann, J.; Melichar, R.; Nehyba, S.; Spacek, P. Brunovistulian terrane (Bohemian Massif, Central Europe) from late Proterozoic to late Paleozoic: A review. Int. J. Earth Sci. 2007, 97, 497–518. [Google Scholar] [CrossRef]
- Żelaźniewicz, A.; Buła, Z.; Fanning, M.; Seghedi, A.; Żaba, J. More evidence on Neoproterozoic terranes in Southern Poland and southeastern Romania. Geol. Q. 2009, 53, 93–124. [Google Scholar]
- Liew, T.C.; Hofmann, A.W. Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of central Europe: Indications from a Nd and Sr isotopic study. Contrib. Miner. Pet. 1988, 98, 129–138. [Google Scholar] [CrossRef]
- Burtan, J.; Golonka, J.; Tomas, A.; Zając, R. Nowe znaleziska paleozoicznych węglanowych skał egzotycznych we fliszu polskich Karpat zewnętrznych; New finds of Paleozoic carbonate exotics in the Flysch of the Polish Outer Carpathians. Geol. Q. 1983, 27, 307–327. [Google Scholar]
- Kotlarczyk, J. Węgiel we fliszu karpackim-kilka spostrzeżeń sedymentologicznych. Ann. Soc. Pol. Tow. Geol. 1979, 18, 37–150. [Google Scholar]
- Ebner, F.; Vozárová, A.; Haas, J.; Kovács, S.; Kräutner, H.-G.; Krstić, B.; Szederkényi, T.; Jamičić, D.; Balen, D.; Belak, M.; et al. Devonian—Carboniferous pre-flysch and flysch environments in the Circum Pannonian Region. Geolo. Carp. 2008, 59, 159–195. [Google Scholar]
- Vozár, J.; Ebner, F.; Vozárová, A.; Haas, J.; Kovács, S.; Sudar, M.; Bielik, M.; Péró, C. Variscan and Alpine terranes of the Circum-Pannonian Region; Geological Institute: Bratislava, Slovakia, 2010. [Google Scholar]
- Oszczypko, N.; Krzywiec, P.; Popadyuk, I.; Peryt, T. Carpathian foredeep basin (Poland and Ukraine): Its sedimentary, structural, and geodynamic evolution. In The Carpathians and Their Foreland: Geology and Hydrocarbon Resources AAPG Memoir; Golonka, J., Picha, F.J., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2006; Volume 84, pp. 221–258. [Google Scholar] [CrossRef]
- Golonka, J.; Gahagan, L.M.; Krobicki, M.; Marko, F.; Oszczypko, N.; Ślączka, A. Plate-tectonic evolution and paleogeography of the circum—Carpathian Region. In The Carpathians and Their Foreland: Geology and Hydrocarbon Researces: AAPG Memoir 84; Golonka, J., Picha, F., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 2006; pp. 11–46. [Google Scholar]
- Bielawska, J. Paleoecological Remarks about the Late Cretaceous Foraminiferids from the Frydek-Type Marls (Subsilesian Unit, Polish Outer Carpathians). Geologica Carpathica. Available online: http://www.geologicacarpathica.com/data/files/files/special%20issue/B/Bielawska.pdf (accessed on 16 April 2021).
- Moscardelli, L.; Wood, L. Morphometry of mass-transport deposits as a predictive tool. GSA Bull. 2016, 128, B31221.1. [Google Scholar] [CrossRef]
- Kováč, M.; Plašienka, D.; Soták, J.; Vojtko, R.; Oszczypko, N.; Less, G.; Ćosović, V.; Fügenschuh, B.; Králiková, S. Paleogene palaeogeography and basin evolution of the Western Carpathians, Northern Pannonian domain and adjoined areas. Glob. Planet. Chang. 2016, 140, 9–27. [Google Scholar] [CrossRef]
Compound | PL 2–Biotite (Bt) | PL 2–Muscovite (Ms) | |||||||
---|---|---|---|---|---|---|---|---|---|
LoD | Bt-1 | Bt-2 | Bt-3 | Bt-4 | Ms-1 | Ms-2 | Ms-3 | Ms-4 | |
SiO2 (wt.%) | 0.04 | 34.45 | 34.24 | 34.72 | 33.67 | 46.29 | 46.90 | 46.40 | 46.56 |
TiO2 | 0.06 | 3.26 | 3.17 | 3.26 | 3.22 | 1.35 | 1.28 | 0.91 | 0.97 |
Al2O3 | 0.03 | 18.09 | 18.16 | 18.44 | 18.09 | 33.06 | 33.88 | 35.38 | 35.30 |
Cr2O3 | 0.01 | 0.08 | 0.18 | 0.30 | 0.03 | 0.12 | 0.03 | 0.07 | b.d.l |
FeO | 0.08 | 25.98 | 25.74 | 25.08 | 26.38 | 2.12 | 2.15 | 1.47 | 1.92 |
MgO | 0.02 | 3.85 | 3.97 | 3.90 | 3.66 | 0.67 | 0.70 | 0.46 | 0.50 |
MnO | 0.02 | 0.62 | 0.56 | 0.51 | 0.71 | b.d.l. | 0.07 | 0.06 | b.d.l. |
Na2O | 0.04 | 0.03 | 0.05 | 0.05 | 0.07 | 0.33 | 0.28 | 0.61 | 0.46 |
K2O | 0.05 | 9.28 | 9.56 | 9.26 | 9.39 | 10.55 | 10.28 | 10.30 | 10.58 |
Total | 95.64 | 95.63 | 95.52 | 95.22 | 94.49 | 95.50 | 95.66 | 96.29 | |
Si (apfu) | 5.423 | 5.395 | 5.437 | 5.351 | 6.247 | 6.238 | 6.152 | 6.152 | |
Aliv | 2.577 | 2.605 | 2.563 | 2.649 | 1.753 | 1.762 | 1.848 | 1.848 | |
Alvi | 0.778 | 0.768 | 0.841 | 0.739 | 3.505 | 3.548 | 3.681 | 3.648 | |
Ti | 5.423 | 5.395 | 5.437 | 5.351 | 0.137 | 0.128 | 0.090 | 0.096 | |
Cr | 0.002 | 0.022 | 0.037 | 0.004 | 0.013 | 0.004 | 0.007 | - | |
Fe | 3.42 | 3.392 | 3.285 | 3.507 | 0.240 | 0.239 | 0.163 | 0.212 | |
Mg | 0.904 | 0.933 | 0.911 | 0.867 | 0.135 | 0.138 | 0.091 | 0.098 | |
Mn | 0.083 | 0.075 | 0.067 | 0.096 | - | 0.008 | 0.007 | - | |
Na | 0.009 | 0.016 | 0.015 | 0.022 | 0.086 | 0.073 | 0.157 | 0.119 | |
K | 1.863 | 1.921 | 1.85 | 1.904 | 1.817 | 1.745 | 1.742 | 1.783 | |
#mg | 0.20 | 0.21 | 0.21 | 0.19 | 0.36 | 0.36 | 0.35 | 0.32 |
Epidote (Ep) | Ilmenite (Ilm) | |||||
---|---|---|---|---|---|---|
Compound | LoD | Ep-1 | Ep-2 | Ep-3 | Ilm-1 | Ilm-2 |
Nb2O5 (wt.%) | 0.10 | - | - | - | 0.36 | 0.25 |
SiO2 | 0.02 | 32.15 | 33.84 | 33.27 | 0.04 | 0.03 |
TiO2 | 0.04 | 0.15 | 0.56 | 0.13 | 50.99 | 50.82 |
ThO2 | 0.07 | 0.23 | 0.31 | 0.17 | - | - |
UO2 | 0.01 | b.d.l. | 0.01 | 0.03 | - | - |
Al2O3 | 0.03 | 19.74 | 20.11 | 20.13 | b.d.l. | b.d.l. |
Fe2O3 | 0.10 | 11.76 | 10.91 | 11.19 | 11.69 | 10.67 |
V2O3 | 0.05 | - | - | - | 0.07 | 0.15 |
Y2O3 | 0.06 | 0.77 | 1.43 | 1.25 | - | - |
La2O3 | 0.04 | 4.46 | 2.99 | 3.25 | - | - |
Ce2O3 | 0.06 | 9.54 | 7.24 | 8.05 | - | - |
Pr2O3 | 0.28 | 0.77 | 0.99 | 0.73 | - | - |
Nd2O3 | 0.40 | 3.30 | 3.54 | 3.46 | - | - |
Sm2O3 | 0.20 | 0.55 | 0.85 | 0.46 | - | - |
Gd2O3 | 0.18 | 1.39 | 1.56 | 1.61 | - | - |
FeO | 0.10 | - | - | - | 26.01 | 27.13 |
MnO | 0.10 | 1.28 | 1.67 | 1.62 | 9.87 | 10.04 |
ZnO | 0.02 | - | - | - | 0.06 | 0.10 |
MgO | 0.02 | 0.08 | 0.08 | 0.06 | - | - |
CaO | 0.04 | 11.49 | 10.91 | 11.77 | - | - |
Na2O | 0.03 | 0.04 | 0.15 | 0.04 | - | - |
H2Ocalc | - | 1.65 | 1.69 | 1.65 | ||
Total | 99.35 | 98.84 | 98.87 | 99.09 | 99.19 | |
crystal-chemical formulea based on | ||||||
25 O2− | 6 O2− | |||||
Nb (apfu) | - | - | - | 0.009 | 0.006 | |
Si | 5.828 | 6.016 | 5.851 | 0.002 | 0.002 | |
Ti | 0.021 | 0.075 | 0.017 | 2.000 | 1.909 | |
Th | 0.010 | 0.013 | 0.007 | - | - | |
U | 0.000 | 0.000 | 0.001 | - | - | |
Al | 4.217 | 4.213 | 4.301 | - | - | |
Fe3+ | 1.604 | 1.459 | 1.527 | 0.311 | 0.289 | |
V | - | - | - | 0.002 | 0.006 | |
Y | 0.074 | 0.135 | 0.121 | - | - | |
La | 0.298 | 0.196 | 0.217 | - | - | |
Ce | 0.633 | 0.471 | 0.534 | - | - | |
Pr | 0.051 | 0.064 | 0.048 | - | - | |
Nd | 0.215 | 0.225 | 0.224 | - | - | |
Sm | 0.034 | 0.052 | 0.054 | - | - | |
Gd | 0.084 | 0.092 | 0.970 | - | - | |
Fe2+ | - | - | - | 1.246 | 1.252 | |
Mn | 0.197 | 0.251 | 0.248 | 0.436 | 0.442 | |
Zn | - | - | - | 0.002 | 0.004 | |
Mg | 0.021 | 0.020 | 0.017 | - | - | |
Ca | 2.233 | 2.077 | 2.287 | - | - | |
Na | 0.015 | 0.054 | 0.014 | - | - | |
ΣREE | 1.315 | 1.100 | 2.047 | - | - |
Feldspar Type/Composition | Ab | Or | An |
---|---|---|---|
K-feldspar and plagioclase | |||
plagioclase original/adjusted | 0.822/0.808 | 0.008/0.010 | 0.163/0.182 |
alkali feldspar original/adjusted | 0.031/0.100 | 0.904/0.899 | 0.004/0.001 |
Concordant temperature [°C] | 412 | 412 | 412 |
Average temperature [°C] | 412 | ||
plagioclase original/odjusted | 0.828/0.806 | 0.011/0.020 | 0.153/0.175 |
alkali feldspar original/adjusted | 0.076/0.116 | 0.894/0.883 | 0.002/0.001 |
Concordant temperature [°C] | 426 | 470 | 470 |
Average temperature [°C] | 455 |
PLUSKAWKA | ||||
---|---|---|---|---|
Sample No. | LoD | Pl 2 | And-J | And-C |
SiO2 (wt.%) | 0.01 | 76.8 | 64.91 | 58.11 |
TiO2 | 0.01 | 0.1 | 0.54 | 0.73 |
Al2O3 | 0.01 | 12.7 | 12.22 | 17.75 |
Fe2O3T | 0.04 | 1.02 | 3.50 | 5.82 |
MnO | 0.01 | 0.03 | 0.06 | 0.07 |
MgO | 0.01 | 0.12 | 0.39 | 0.49 |
CaO | 0.01 | 1.04 | 5.75 | 3.18 |
Na2O | 0.01 | 3.19 | 2.93 | 4.13 |
K2O | 0.01 | 4.49 | 3.45 | 5.38 |
P2O5 | 0.01 | 0.03 | 0.25 | 0.35 |
LOI | - | 0.25 | 5.90 | 3.80 |
Total | 99.77 | 99.90 | 99.81 | |
Sr | 0.5 | 72.5 | 218.00 | 275.60 |
Ba | 1.0 | 593.00 | 714.00 | 1000.00 |
Rb | 0.1 | 169.7 | 40.20 | 59.90 |
Th | 0.2 | 17.10 | 12.00 | 16.60 |
U | 0.1 | 5.10 | 3.50 | 2.60 |
Ga | 0.5 | 13.40 | 12.30 | 17.00 |
Ni | 0.1 | 1.10 | 20.00 | 32.00 |
Cr | 5.0 | - | 62.00 | 90.00 |
Zr | 0.1 | 96.00 | 138.10 | 196.30 |
Hf | 0.1 | 3.30 | 3.30 | 4.90 |
Y | 0.1 | 20.30 | 10.20 | 13.90 |
Nb | 0.1 | 7.80 | 11.90 | 16.30 |
Ta | 0.1 | 0.90 | 0.80 | 1.30 |
La | 0.1 | 35.10 | 52.80 | 75.30 |
Ce | 0.1 | 65.20 | 89.50 | 123.80 |
Pr | 0.02 | 7.10 | 9.99 | 14.00 |
Nd | 0.30 | 26.50 | 35.30 | 49.00 |
Sm | 0.05 | 4.48 | 5.27 | 7.12 |
Eu | 0.02 | 0.43 | 1.27 | 1.68 |
Gd | 0.05 | 4.05 | 3.53 | 4.79 |
Tb | 0.01 | 0.65 | 0.41 | 0.56 |
Dy | 0.05 | 3.86 | 1.96 | 2.86 |
Ho | 0.02 | 0.73 | 0.35 | 0.50 |
Er | 0.03 | 2.06 | 0.96 | 1.42 |
Tm | 0.01 | 0.3 | 0.13 | 0.18 |
Yb | 0.05 | 2.27 | 0.92 | 1.17 |
Lu | 0.01 | 0.32 | 0.14 | 0.19 |
ASI | 1.07 | 0.66 | 1.01 | |
Rb/Sr | 2.34 | 0.18 | 0.22 | |
#mg | 0.32 | 0.31 | 0.25 | |
Nd/Th | 1.55 | 2.94 | 2.95 | |
ΣREE | 153.05 | 202.53 | 282.57 | |
Eu/Eu* | 0.31 | 0.90 | 0.88 | |
CeN/YbN | 7.54 | 25.55 | 27.79 | |
TZr [°C] | 758 | N.A. | N.A. |
Sample No. | Pb207/U235 | 2σ | Pb206/U238 | 2σ | Rho | 207Pb/235U Age [Ma] | 2σ | 206Pb/238U Age [Ma] | 2σ | U [ppm] | Th [ppm] | Th/U |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Microgranitoid | ||||||||||||
Magmatic zircon crystals—Variscan | ||||||||||||
PL2_1 | 0.335 | 0.026 | 0.0449 | 0.0019 | 0.024733 | 293 | 10 | 283.4 | 7.1 | 219 | 384 | 1.75 |
PL2_2 | 0.341 | 0.026 | 0.0472 | 0.0019 | 0.19609 | 297 | 10 | 297.4 | 6.3 | 202 | 262 | 1.42 |
PL2_4 | 0.323 | 0.028 | 0.046 | 0.0019 | 0.14079 | 282 | 14 | 289.7 | 6.5 | 124.2 | 213 | 1.71 |
PL2_6 | 0.338 | 0.034 | 0.0472 | 0.002 | 0.11162 | 301 | 19 | 297.3 | 7.3 | 69.1 | 84 | 1.22 |
PL2_10 | 0.343 | 0.03 | 0.0461 | 0.0019 | 0.096029 | 299 | 15 | 290.5 | 6.5 | 322 | 691 | 2.15 |
PL2_13 | 0.329 | 0.029 | 0.0468 | 0.0019 | 0.011323 | 290 | 15 | 294.6 | 6.5 | 151.2 | 374 | 2.47 |
PL2_19 | 0.367 | 0.035 | 0.0474 | 0.002 | 0.23971 | 318 | 19 | 298.7 | 6.7 | 176.3 | 260.9 | 1.48 |
Concordia age = 293.2 ± 4.1 Ma; MSWD = 0.31 | ||||||||||||
Inherited zircon crystals—Neoproterozoic | ||||||||||||
PL2_3 | 0.94 | 0.068 | 0.1074 | 0.0042 | 0.1809 | 673 | 15 | 659 | 11 | 227 | 157 | 0.69 |
PL2_16 | 0.804 | 0.067 | 0.097 | 0.004 | 0.22032 | 597 | 24 | 596 | 13 | 64.8 | 40.4 | 0.62 |
PL2_18 | 0.854 | 0.071 | 0.0989 | 0.0047 | 0.25292 | 632 | 21 | 608 | 19 | 284.9 | 129.2 | 0.45 |
PL2_20 * | 0.932 | 0.079 | 0.0953 | 0.0045 | 0.82171 | 673 | 27 | 587 | 18 | 301.2 | 302.6 | 1.00 |
PL2_22 * | 0.903 | 0.068 | 0.0935 | 0.0042 | 0.47181 | 662 | 22 | 576 | 16 | 423 | 150.8 | 0.36 |
Inherited zircon crystals–Archean | ||||||||||||
PL2_7 | 6.376 | 0.42 | 0.3646 | 0.013 | 0.51946 | 2028 | 10 | 2003 | 21 | 427 | 410 | 0.97 |
PL2_8 | 5.628 | 0.38 | 0.3339 | 0.013 | 0.67559 | 1921 | 13 | 1856 | 27 | 392 | 318 | 0.81 |
PL2_9 | 6.403 | 0.43 | 0.3641 | 0.014 | 0.59429 | 2031 | 12 | 2001 | 22 | 563 | 665 | 1.18 |
PL2_11 * | 8.68 | 0.68 | 0.358 | 0.017 | 0.86632 | 2299 | 39 | 1973 | 54 | 117 | 157 | 1.34 |
PL2_14 * | 5.93 | 0.44 | 0.2566 | 0.011 | 0.83782 | 1961 | 30 | 1471 | 33 | 229 | 39.6 | 0.17 |
PL2_17 | 12.36 | 0.83 | 0.491 | 0.019 | 0.63744 | 2634 | 14 | 2574 | 31 | 658 | 376 | 0.57 |
PL2_21 | 2.155 | 0.17 | 0.1932 | 0.011 | 0.64341 | 1165 | 28 | 1138 | 45 | 469 | 119.4 | 0.25 |
Andesite | ||||||||||||
Rims—Variscan | ||||||||||||
And_9 | 0.343 | 0.025 | 0.0493 | 0.0011 | 0.2744 | 310.2 | 6.9 | 299.4 | 21.8 | 111.2 | 200.7 | 1.81 |
And_12 | 0.373 | 0.021 | 0.049 | 0.0012 | 0.1797 | 308.4 | 7.6 | 321.9 | 18.1 | 73.8 | 114.8 | 1.56 |
Concordia age = 310 ± 4.9 Ma; MSWD = 0.22 | ||||||||||||
Inherited cores and crystals—Neoproterozoic | ||||||||||||
And_15 | 0.751 | 0.043 | 0.0904 | 0.0025 | 0.1835 | 557.9 | 15.4 | 568.8 | 32.6 | 38.3 | 29.55 | 0.77 |
And_5 | 0.834 | 0.041 | 0.1003 | 0.002 | 0.1204 | 616.2 | 12.3 | 615.8 | 30.3 | 61.4 | 50.5 | 0.82 |
And_6 | 0.84 | 0.043 | 0.1018 | 0.0027 | 0.1315 | 624.9 | 16.6 | 619.1 | 31.7 | 113 | 52 | 0.46 |
And_7 | 0.833 | 0.045 | 0.0979 | 0.0022 | 0.1854 | 602.1 | 13.5 | 615.3 | 33.2 | 45.8 | 25.65 | 0.56 |
And_8 | 0.881 | 0.04 | 0.1036 | 0.0028 | 0.3205 | 635.5 | 17.2 | 641.5 | 29.1 | 60.7 | 42.6 | 0.70 |
And_16 | 0.812 | 0.034 | 0.1017 | 0.0021 | 0.2615 | 624.4 | 12.9 | 603.6 | 25.3 | 104.4 | 80 | 0.77 |
And_17 | 0.864 | 0.04 | 0.0988 | 0.0032 | 0.2590 | 607.4 | 19.7 | 632.3 | 29.3 | 73.6 | 76.5 | 1.04 |
Concordia age = 618.4 ± 8.3 Ma; MSWD = 0.18 | ||||||||||||
And_1 | 1.025 | 0.044 | 0.1171 | 0.0024 | 0.2701 | 713.9 | 14.6 | 716.4 | 30.8 | 71.4 | 107.6 | 1.51 |
And_2 | 1.033 | 0.038 | 0.1175 | 0.0024 | 0.2079 | 716.2 | 14.6 | 720.4 | 26.5 | 73.4 | 115.5 | 1.57 |
And_3 | 1.04 | 0.039 | 0.1176 | 0.0024 | 0.3231 | 716.7 | 14.6 | 723.9 | 27.1 | 74.3 | 115.8 | 1.56 |
Concordia age = 716.9 ± 7.3 Ma; MSWD = 0.66 | ||||||||||||
Inherited zircon crystals—Archean | ||||||||||||
And_4 | 13.36 | 0.25 | 0.4982 | 0.009 | 0.4992 | 2606.1 | 47.1 | 2705.4 | 50.6 | 206.6 | 183.9 | 0.89 |
And_10 | 11.4 | 0.36 | 0.441 | 0.013 | 0.6003 | 2355.1 | 69.4 | 2556.4 | 80.7 | 61.4 | 83.4 | 1.36 |
And_11 | 5.626 | 0.084 | 0.2261 | 0.004 | 0.3906 | 1314.0 | 23.2 | 1920.1 | 28.7 | 1095 | 113 | 0.10 |
And_13 | 17.48 | 0.29 | 0.5863 | 0.0098 | 0.7073 | 2974.4 | 49.7 | 2961.6 | 49.1 | 775 | 485 | 0.63 |
And_14 | 16.46 | 0.56 | 0.564 | 0.019 | 0.6219 | 2883.1 | 97.1 | 2903.9 | 98.8 | 413 | 278 | 0.67 |
Scheme 147. | Sm [ppm] | Nd [ppm] | 147Sm/144Nd | 143Nd/144Nd | ± | εNd316 | TDM |
---|---|---|---|---|---|---|---|
Pl 2 | 4.48 | 26.5 | 0.102196 | 0.512175 | 0.000003 | 5.50 | 1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golonka, J.; Gawęda, A.; Waśkowska, A.; Chew, D.; Szopa, K.; Drakou, F. Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland. Minerals 2021, 11, 571. https://doi.org/10.3390/min11060571
Golonka J, Gawęda A, Waśkowska A, Chew D, Szopa K, Drakou F. Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland. Minerals. 2021; 11(6):571. https://doi.org/10.3390/min11060571
Chicago/Turabian StyleGolonka, Jan, Aleksandra Gawęda, Anna Waśkowska, David Chew, Krzysztof Szopa, and Foteini Drakou. 2021. "Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland" Minerals 11, no. 6: 571. https://doi.org/10.3390/min11060571
APA StyleGolonka, J., Gawęda, A., Waśkowska, A., Chew, D., Szopa, K., & Drakou, F. (2021). Tracing Pre-Mesozoic Tectonic Sutures in the Crystalline Basement of the Protocarpathians: Evidence from the Exotic Blocks from Subsilesian Nappe, Outer Western Carpathians, Poland. Minerals, 11(6), 571. https://doi.org/10.3390/min11060571