Lead Recovery from Solid Residues of Copper Industry Using Triethylenetetramine Solution
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koppelaar, R.H.E.M.; Koppelaar, H. The Ore Grade and Depth Influence on Copper Energy Inputs. Biophys. Econ. Resour. Qual. 2016, 11, 2–16. [Google Scholar] [CrossRef]
- McDonald, R.G.; Muir, D.M. Pressure oxidation leaching of chalcopyrite. Part I. Comparison of high and low temperature reaction kinetics and products. Hydrometallurgy 2007, 86, 191–205. [Google Scholar] [CrossRef]
- Lundstrom, M.; Lippo, J.; Karonen, J.; Aromaa, J. Dissolution of six sulfide concentrates in the hydrocopper® environment. In Proceedings of the Southern African Institute of Mining and Metallurgy Base Metals Conference, Kasane, Botswana, 27–31 July 2009; pp. 127–138. [Google Scholar]
- Fleming, C.A. Basic iron sulphate—A potential killer for pressure oxidation processing of refractory gold concentrates if not handled appropriately. Miner. Metall. Proc. 2010, 27, 81–88. [Google Scholar]
- Long, H. A Fundamental Study of the Acidic Pressure Oxidation of Orpimeni and Pyrite at High Temperature. Ph.D. Thesis, The University of British Columbia, Vancouver, WA, Canada, 2000. [Google Scholar]
- Dutrizac, J.E.; Jambor, J.L. Jarosites and their application in hydrometallurgy. Rev. Mineral. Geochem. 2000, 40, 405–452. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Das, S.C. Recovery of lead from zinc plant waste. Trans. Indian Inst. Met. 1986, 39, 604–608. [Google Scholar]
- Vinals, J.; Nunez, C.; Carassco, J. Leaching of gold, silver and lead from plumbojarosite-containing hematite tailings in HCl-CaCl2 media. Hydrometallurgy 1991, 26, 179–199. [Google Scholar] [CrossRef]
- Kunda, W.; Veltman, H. Decomposition of jarosite. Metall. Trans. 1979, 10, 439–446. [Google Scholar] [CrossRef]
- Cruells, M.; Roca, A.; Patino, F.; Salinas, E.; Rivera, I. Cyanidation kinetics of argentian jarosite in alkaline media. Hydrometallurgy 2000, 55, 153–163. [Google Scholar] [CrossRef]
- Patino, F.; Arenas, A.; Rivera, I.; Cordoba, D.A.; Hernandez, L.; Salinas, E. Decomposition of argentiferous plumbojarosite in CaO media. Rev. Soc. Quim. Mexico 1998, 42, 122–128. [Google Scholar]
- Liu, C.; Ju, S.H.; Zhang, L.B.; Srinivasakannan, C.; Peng, J.H.; Le, T.Q.X.; Guo, Z.Y. Recovery of valuable metals from jarosite by sulphuric acid roasting using microwave and water leaching. Can. Metall. Q. 2016, 56, 1–9. [Google Scholar] [CrossRef]
- Ju, S.H.; Zhang, Y.F.; Zhang, Y.; Wang, Y.F. Clean hydrometallurgical route to recover zinc, silver, lead, copper, cadmium and iron from hazardous jarosite residues produced during zinc hydrometallurgy. J. Hazard. Mater. 2011, 192, 554–558. [Google Scholar] [CrossRef] [PubMed]
- Salinas, E.; Roca, A.; Cruells, M.; Patiño, F.; Córdoba, D.A. Characterization and alkaline decomposition–cyanidation kinetics of industrial ammonium jarosite in NaOH media. Hydrometallurgy 2001, 60, 237–246. [Google Scholar] [CrossRef]
- Deng, X.; Liu, W.; Zhang, D.; Chen, L.; Liu, Z.; Yang, T. Hydrothermal desulfurization of spent lead paste based on comproportionation reaction. Sep. Purif. Technol. 2011, 259, 118115. [Google Scholar] [CrossRef]
- Dai, F.; Huang, H.; Chen, B.; Zhang, P.; Hea, Y.; Guo, Z. Recovery of high purity lead from spent lead paste via direct electrolysis and process evaluation. Sep. Purif. Technol. 2019, 224, 237–246. [Google Scholar] [CrossRef]
- Tang, L.; Tang, C.B.; Xiao, J.; Zeng, P.; Tang, M.; Wang, Z.; Zhang, Z. A cleaner process for lead recovery from lead-containing hazardous solid waste and zinc leaching residue via reducing-matting smelting. J. Clean. Prod. 2019, 241, 118328. [Google Scholar] [CrossRef]
- Lyakov, N.K.; Atanasova, D.A.; Vassilev, V.S.; Haralampiev, G.A. Desulphurization of damped battery paste by sodium carbonateand sodium hydroxide. J. Power Sources 2007, 171, 960–965. [Google Scholar] [CrossRef]
- Ning, P.; Pan, J.-Q.; Li, X.; Zhou, Y.; Chen, J.-F.; Wang, J.-X. Accelerated desulphurization of waste lead battery paste in a high-gravity rotating packed bed. Chem. Eng. Process. 2016, 104, 148–153. [Google Scholar] [CrossRef]
- Ma, C.; Shu, Y.; Chen, H. Preparation of high-purity lead oxide from spent lead paste by low temperature burning and hydrometallurgical processing with ammonium acetate solution. RSC Adv. 2016, 6, 21148. [Google Scholar] [CrossRef]
- Sonmeza, M.S.; Kumar, R.V. Leaching of waste battery paste components. Part 2: Leaching and desulphurisationof PbSO4 by citric acid and sodium citrate solution. Hydrometallurgy 2009, 95, 82–86. [Google Scholar] [CrossRef]
- Srichandan, H.; Mohapatra, R.K.; Parhi, P.K.; Mishra, S. Bioleaching approach for extraction of metal values from secondary solidwastes: A critical review. Hydrometallurgy 2019, 189, 105122. [Google Scholar] [CrossRef]
- Chmielarz, A.; Szołomicki, Z.; Kurowski, R.; Mrozowski, J. Triethylenetetramine (TETA)—A powerful leachant in lead recovery. In Proceedings of the 7th International Symposium Hydrometallurgy, Victoria, BC, Canada, 22–25 June 2014. [Google Scholar]
- Wang, L.; Chen, Q.; Jamro, I.A.; Lia, R.D.; Baloch, H.A. Accelerated co-precipitation of lead, zinc and copper by carbon dioxide bubbling in alkaline municipal solid waste incinerator (MSWI) fly ash wash water. RSC Adv. 2016, 6, 20173–20186. [Google Scholar] [CrossRef]
Sample | Pb | Zn | Cu | Fe | As | Al | Si | Ag | STOT | SSO4 |
---|---|---|---|---|---|---|---|---|---|---|
SE | 6.68 | 0.07 | 0.05 | 21.1 | 0.25 | 0.07 | 1.41 | 0.006 | 13.5 | 13.32 |
PL | 6.37 | 0.05 | 1.25 | 10.4 | 0.54 | 4.72 | 10.95 | 0.077 | 6.75 | 6.61 |
OR | 19.7 | 0.31 | 0.31 | 29.45 | 0.21 | 0.10 | 0.38 | 0.029 | 11.75 | 10.97 |
Sample | SE | PL | OR |
---|---|---|---|
CPbSOLID/% | 14.8 | 8.9 | 59.2 |
pHTETA start | 12 | 11.8 | 12 |
pHTETA final | 11.1 | 11.0 | 11 |
Mass loss/% | 27.3 | 29.3 | 76.4 |
Pb leached/% | 91.3 | 37.8 | 86.2 |
Sample | Pb/% | Fe/% | Cu/% | As/% | Ni/% | Wettness/% |
---|---|---|---|---|---|---|
SE | 76 | <0.005 | <0.0025 | <0.01 | 0 | 20 |
PL | 75.7 | 0.25 | <0.0025 | <0.01 | 0.03 | 24 |
OR | 75.8 | <0.005 | <0.0025 | <0.01 | 0 | 22 |
Sample | Pb/% | Fe/% | Cu/% | As/% | Co/% | CaCO3/% | Wett./% |
---|---|---|---|---|---|---|---|
SE | <0.0042 | 0.012 | <0.0025 | <0.01 | <0.0025 | 0.8 | 9.4 |
PL | <0.003 | 0.012 | <0.0025 | <0.01 | <0.0025 | 0.89 | 15 |
OR | <0.0085 | 0.011 | <0.0025 | <0.01 | <0.0025 | 1 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciszewski, M.; Chmielarz, A.; Szołomicki, Z.; Drzazga, M.; Leszczyńska-Sejda, K. Lead Recovery from Solid Residues of Copper Industry Using Triethylenetetramine Solution. Minerals 2021, 11, 546. https://doi.org/10.3390/min11050546
Ciszewski M, Chmielarz A, Szołomicki Z, Drzazga M, Leszczyńska-Sejda K. Lead Recovery from Solid Residues of Copper Industry Using Triethylenetetramine Solution. Minerals. 2021; 11(5):546. https://doi.org/10.3390/min11050546
Chicago/Turabian StyleCiszewski, Mateusz, Andrzej Chmielarz, Zbigniew Szołomicki, Michał Drzazga, and Katarzyna Leszczyńska-Sejda. 2021. "Lead Recovery from Solid Residues of Copper Industry Using Triethylenetetramine Solution" Minerals 11, no. 5: 546. https://doi.org/10.3390/min11050546
APA StyleCiszewski, M., Chmielarz, A., Szołomicki, Z., Drzazga, M., & Leszczyńska-Sejda, K. (2021). Lead Recovery from Solid Residues of Copper Industry Using Triethylenetetramine Solution. Minerals, 11(5), 546. https://doi.org/10.3390/min11050546