Equations of State of Ca-Silicates and Phase Diagram of the CaSiO3 System under Upper Mantle Conditions
Abstract
1. Introduction
2. Thermodynamic Model
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gasparik, T.; Wolf, K.; Smith, C.M. Experimental determination of phase relations in the CaSiO3 system from 8 to 15 GPa. Am. Mineral. 1994, 79, 1219–1222. [Google Scholar]
- Swamy, V.; Dubrovinsky, L.S. Thermodynamic data for the phases in the CaSiO3 system. Geochim. Cosmochim. Acta 1997, 61, 1181–1191. [Google Scholar] [CrossRef]
- Joswig, W.; Stachel, T.; Harris, J.W.; Baur, W.H.; Brey, G.P. New Ca-silicate inclusions in diamonds—Tracers from the lower mantle. Earth Planet. Sci. Lett. 1999, 173, 1–6. [Google Scholar] [CrossRef]
- Stachel, T.; Harris, J.W.; Brey, G.P.; Joswig, W. Kankan diamonds (Guinea) II: Lower mantle inclusion parageneses. Contrib. Mineral. Petrol. 2000, 140, 16–27. [Google Scholar] [CrossRef]
- Anzolini, C.; Angel, R.J.; Merlini, M.; Derzsi, M.; Tokar, K.; Milani, S.; Krebs, M.Y.; Brenker, F.E.; Nestola, F.; Harris, J.W. Depth of formation of CaSiO3-walstromite included in super-deep diamonds. Lithos 2016, 265, 138–147. [Google Scholar] [CrossRef]
- Nestola, F.; Korolev, N.; Kopylova, M.; Rotiroti, N.; Pearson, D.G.; Pamato, M.G.; Alvaro, M.; Peruzzo, L.; Gurney, J.J.; Moore, A.E.; et al. CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle. Nature 2018, 555, 237–241. [Google Scholar] [CrossRef]
- Woodland, A.B.; Girnis, A.V.; Bulatov, V.K.; Brey, G.P.; Hofer, H.E. Breyite inclusions in diamond: Experimental evidence for possible dual origin. Eur. J. Mineral. 2020, 32, 171–185. [Google Scholar] [CrossRef]
- Yang, H.; Prewitt, C.T. On the crystal structure of pseudowollastonite (CaSiO3). Am. Mineral. 1999, 84, 929–932. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Major, A. Some high-pressure transformations of geophysical significance. Earth Planet. Sci. Lett. 1967, 2, 106–110. [Google Scholar] [CrossRef]
- Brenker, F.; Nestola, F.; Brenker, L.; Peruzzo, L.; Secco, L.; Harris, J.W. Breyite, IMA 2018-062, CNMNC Newsletter. Mineral. Mag. 2018, 82, 1225–1232. [Google Scholar]
- Essene, E. High-Pressure transformations in CaSiO3. Contrib. Mineral. Petrol. 1974, 45, 247–250. [Google Scholar] [CrossRef]
- Akaogi, M.; Yano, M.; Tejima, Y.; Iijima, M.; Kojitani, H. High-pressure transitions of diopside and wollastonite: Phase equilibria and thermochemistry of CaMgSi2O6, CaSiO3 and CaSi2O5–CaTiSiO5 system. Phys. Earth Planet. Inter. 2004, 143–144, 145–156. [Google Scholar] [CrossRef]
- Kanazaki, M.; Stebbins, J.F.; Xue, X. Characterization of quenched high pressure phase in CaSiO3 system by XRD and 29Si NMR. Geophys. Res. Lett. 1991, 18, 463–466. [Google Scholar] [CrossRef]
- Sueda, Y.; Irifune, T.; Yamada, A.; Inoue, T.; Liu, X.; Funakoshi, K. The phase boundary between CaSiO3 perovskite and Ca2SiO4+CaSi2O5 determined by in situ X-ray observations. Geophys. Res. Lett. 2006, 33, L10307. [Google Scholar] [CrossRef]
- Chatterjee, N.D.; Johannes, W.; Leistner, H. The system CaO-Al2O3-SiO2-H2O: New phase equilibria data, some calculated phase relations, and their petrological applications. Contrib. Mineral. Petrol. 1984, 88, 1–13. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Dymshits, A.M.; Sokolova, T.S.; Danilov, B.S.; Litasov, K.D. The equations of state of forsterite, wadsleyite, ringwoodite, akimotoite, MgSiO3-perovskite, and postperovskite and phase diagram for the Mg2SiO4 system at pressures of up to 130 GPa. Russ. Geol. Geophys. 2015, 56, 172–189. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Dorogokupets, P.I.; Litasov, K.D.; Danilov, B.S.; Dymshits, A.M. Spreadsheets to calculate P-V-T relations, thermodynamic and thermoelastic properties of silicates in the MgSiO3–MgO system. High Press. Res. 2018, 38, 193–211. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Dorogokupets, P.I.; Litasov, K.D. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2–NaCl as well as Au, Pt, and other metals to 4 Mbar and 3000 K. Russ. Geol. Geophys. 2013, 54, 181–199. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Dorogokupets, P.I.; Dymshits, A.M.; Danilov, B.S.; Litasov, K.D. Microsoft excel spreadsheets to calculate P-V-T relations and thermodynamic properties from equations of state of nine metals, MgO and diamond used as pressure markers in high-pressure and high-temperature experiments. Comput. Geosci. 2016, 94, 162–169. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Dymshits, A.M.; Litasov, K.D.; Sokolova, T.S. Thermodynamics and equations of state of iron to 350 GPa and 6000 K. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Litasov, K.D.; Sharygin, I.S.; Shatskii, A.F.; Gavryushkin, P.N.; Dorogokupets, P.I.; Sokolova, T.S.; Ohtani, E.; Dymshits, A.M.; Alifirova, T.A. P–V–T Equations of state for iron carbides Fe3C and Fe7C3 and their relationships under the conditions of the Earth’s mantle and core. Dokl. Earth Sci. 2013, 453, 1269–1273. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Sokolova, T.S.; Dymshits, A.M.; Litasov, K.D. Thermodynamic properties of rock-forming oxides, α-Al2O3, Cr2O3, α-Fe2O3, and Fe3O4 at high temperatures and pressures. Geodynam. Tectonophys. 2016, 7, 459–476. [Google Scholar] [CrossRef]
- Magomedov, M.N. Variations in thermal properties of diamond under isothermal compression. Tech. Phys. 2017, 62, 661–668. [Google Scholar]
- Angel, R.J.; Miozzi, F.; Alvaro, M. Limits to the validity of thermal-pressure equations of state. Minerals 2019, 9, 562. [Google Scholar] [CrossRef]
- Katsura, T.; Tange, Y. A simple derivation of the Birch–Murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain. Minerals 2019, 9, 745. [Google Scholar] [CrossRef]
- Khishchenko, K.V. Equation of state for rhenium at high pressures. J. Phys. Conf. Ser. 2020, 1556, 012041. [Google Scholar] [CrossRef]
- Zharkov, V.N.; Kalinin, V.A. Equations of State for Solids at High Pressures and Temperatures; Consuitants Bureau: New York, NY, USA, 1971. [Google Scholar]
- Kunc, K.; Loa, I.; Syassen, K. Equation of state and phonon frequency calculations of diamond at high pressures. Phys. Rev. B 2003, 68, 094107. [Google Scholar] [CrossRef]
- Vinet, P.; Ferrante, J.; Rose, J.H.; Smith, J.R. Compressibility of solids. J. Geophys. Res. 1987, 92, 9319–9325. [Google Scholar] [CrossRef]
- Holzapfel, W.B. Physics of solids under strong compression. Rep. Prog. Phys. 1996, 59, 29–90. [Google Scholar] [CrossRef]
- Birch, F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. Solid Earth 1978, 83, 1257–1268. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Equations of state of Al, Au, Cu, Pt, Ta, and W and revised ruby pressure scale. Dokl. Earth Sci. 2006, 410, 1091–1095. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Oganov, A.R. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shock-wave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Phys. Rev. B 2007, 75, 024115. [Google Scholar] [CrossRef]
- Al’tshuler, L.V.; Brusnikin, S.E.; Kuz’menkov, E.A. Isotherms and Gruneisen functions of 25 metals. J. Appl. Mech. Tech. Phys. 1987, 28, 129–141. [Google Scholar] [CrossRef]
- Schmetterer, C.; Masset, P.J. Heat capacity of compounds in the CaO-SiO2 System—A Review. J. Phase Equilib. Diffus. 2012, 33, 261–275. [Google Scholar] [CrossRef]
- Swamy, V.; Dubrovinsky, L.S.; Tutti, F. High-temperature Raman spectra and thermal expansion of wollastonite. J. Am. Ceram. Soc. 1997, 80, 2237–2247. [Google Scholar] [CrossRef]
- Vaiday, S.N.; Bailey, S.; Pasternack, T.; Kennedy, G.C. Compressibility of fifteen minerals to 45 kilobars. J. Geophys. Res. 1973, 78, 6893–6898. [Google Scholar] [CrossRef]
- Yang, H.; Prewitt, C.T. Crystal structure and compressibility of a two-layer polytype of pseudowollastonite (CaSiO3). Am. Mineral. 1999, 84, 1902–1905. [Google Scholar] [CrossRef]
- Southard, J.C. A modified calorimeter for high temperatures. The heat content of silica, wollastonite and thorium dioxide above 25°. J. Am. Chem. Soc. 1941, 63, 3142–3146. [Google Scholar] [CrossRef]
- Krupka, K.M.; Robie, R.A.; Hemingway, B.S.; Kerrick, D.M. Low-temperature heat capacities an derived thermodynamic properties of anthophyllite, diopside, enstatite, bronzite, and wollastonite. Am. Mineral. 1985, 70, 249–260. [Google Scholar]
- Krupka, K.M.; Robie, R.A.; Hemingway, B.S.; Kerrick, D.M. High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite, and wollastonite. Am. Mineral. 1985, 70, 261–271. [Google Scholar]
- Richet, P.; Fiquet, G. High-Temperature heat capacity and premelting of minerals in the system MgO-CaO-Al2O3-SiO2. J. Geophys. Res. 1991, 96, 445–456. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 2011, 29, 333–383. [Google Scholar] [CrossRef]
- Richet, P.; Mysen, B.O.; Ingrib, J. High-temperature X-ray diffraction and Raman spectroscopy of diopside and pseudowollastonite. Phys. Chem. Miner. 1998, 25, 401–414. [Google Scholar] [CrossRef]
- White, W.P. Silicate specific heats, Second series. Am. J. Sci. 1919, 47, 1–44. [Google Scholar] [CrossRef]
- Parks, G.S.; Kelley, K.K. The heat capacity of calcium silicate. J. Phys. Chem. 1926, 30, 1175–1178. [Google Scholar] [CrossRef]
- Berman, R.G.; Brown, T.H. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-A12O3-SiO2-TiO2-H2O-CO2: Representation, estimation, and high temperature extrapolation. Contrib. Mineral. Petrol. 1985, 89, 168–183. [Google Scholar] [CrossRef]
- Huang, W.-L.; Wyllie, P.J. Melting and subsolidus phase relationships for CaSiO3 to 35 kilobars pressure. Am. Mineral. 1975, 60, 213–217. [Google Scholar]
- Joswig, W.; Paulus, E.F.; Winkler, B.; Milman, V. The crystal structure of CaSiO3-walstromite, a special isomorph of wollastonite-II. Z. Krist. 2003, 218, 811–818. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; He, Q.; Chen, J.; Wang, H.; Li, S.; Peng, F.; Zhang, L.; Fei, Y. Thermal elastic behavior of CaSiO3-walstromite: A powder X-ray diffraction study up to 900 °C. Am. Mineral. 2012, 97, 262–267. [Google Scholar] [CrossRef]
- Remy, C.; Andrault, D.; Madon, M. High-temperature, high-pressure X-ray investigation of dicalcium silicate. J. Am. Ceram. Soc. 1997, 80, 851–860. [Google Scholar] [CrossRef]
- Yamnova, N.A.; Zubkova, N.V.; Eremin, N.N.; Zadov, A.E.; Gazeev, V.M. Crystal structure of larnite β-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallogr. Rep. 2011, 56, 210–220. [Google Scholar] [CrossRef]
- Tilley, C.E. On larnite (calcium orthosilicate, a new mineral) and its associated minerals from the limestone contact-zone of Scawt Hill, Co. Antrim. Mineral. Mag. 1929, 22, 77–86. [Google Scholar] [CrossRef]
- Todd, S.S. Low-temperature heat capacities and entropies at 298.16 °K of crystalline calcium orthosilicate, zinc orthosilicate and tricalcium silicate. J. Am. Chem. Soc. 1951, 73, 3277–3278. [Google Scholar] [CrossRef]
- Coughlin, J.P.; O’Brien, C.J. High temperature heat contents of calcium orthosilicate. J. Phys. Chem. 1957, 61, 767–769. [Google Scholar] [CrossRef]
- Fukuda, K.; Maki, I.; Ito, S. Anisotropic thermal expansion of β-Ca2SiO4 monoclinic crystal. J. Am. Ceram. Soc. 1997, 80, 1595–1598. [Google Scholar] [CrossRef]
- Xiong, Z.; Liu, X.; Shieh, S.R.; Wang, S.; Chang, L.; Tang, J.; Hong, X.; Zhang, Z.; Wang, H. Some thermodynamic properties of larnite (β-Ca2SiO4) constrained by high T/P experiment and/or theoretical simulation. Am. Miner. 2016, 101, 277–288. [Google Scholar] [CrossRef]
- Angel, R.J.; Kunz, M.; Miletich, R.; Woodland, A.B.; Koch, M.; Knoche, R.L. Effect of isovalent Si, Ti substitution on the bulk moduli of Ca(Ti1-xSix)SiO5 titanites. Am. Miner. 1999, 84, 282–287. [Google Scholar] [CrossRef]
- Ringwood, A.E.; Major, A. Synthesis of majorite and other high pressure garnets and perovskites. Earth Planet. Sci. Lett. 1971, 12, 411–418. [Google Scholar] [CrossRef]
- Sun, N.; Mao, Z.; Yan, S.; Wu, X.; Prakapenka, V.B.; Lin, J.-F. Confirming a pyrolitic lower mantle using self-consistent pressure scales and new constraints on CaSiO3 perovskite. Phys. Res. Solid Earth 2016, 121, 4876–4894. [Google Scholar] [CrossRef]
- Chen, H.; Shim, S.-H.; Leinenweber, K.; Prakapenka, V.; Meng, Y.; Prescher, C. Crystal structure of CaSiO3 perovskite at 28–62 GPa and 300 K under quasi-hydrostatic stress conditions. Am. Miner. 2018, 103, 462–468. [Google Scholar] [CrossRef]
- Kojitani, H.; Navrotsky, A.; Akaogi, M. Calorimetric study of perovskite solid solutions in the CaSiO3-CaGeO3 system. Phys. Chem. Miner. 2001, 28, 413–420. [Google Scholar] [CrossRef]
- Noguchi, M.; Komabayashi, T.; Hirose, K.; Ohishi, Y. High-temperature compression experiments of CaSiO3 perovskite to lowermost mantle conditions and its thermal equation of state. Phys. Chem. Miner. 2013, 40, 81–91. [Google Scholar] [CrossRef]
- Greaux, S.; Irifune, T.; Higo, Y.; Tange, Y.; Arimoto, T.; Liu, Z.; Yamada, A. Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature 2019, 565, 218–221. [Google Scholar] [CrossRef]
- Dorogokupets, P.I.; Dewaele, A. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Press. Res. 2007, 27, 431–446. [Google Scholar] [CrossRef]
- Fei, Y.W.; Ricolleau, A.; Frank, M.; Mibe, K.; Shen, G.Y.; Prakapenka, V. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. USA 2007, 104, 9182–9186. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Higo, Y.; Okamoto, Y.; Irifune, T.; Funakoshi, K.I. Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard. Am. Miner. 2012, 97, 1670–1675. [Google Scholar] [CrossRef]
- Mao, H.K.; Chen, L.C.; Hemley, R.J.; Jephcoat, A.P.; Wu, Y. Stability and equation of state of CaSiO3-perovskite to 134 GPa. J. Geophys. Res. 1989, 94, 17889–17894. [Google Scholar] [CrossRef]
- Shim, S.-H.; Duffy, T.S.; Shen, G. The equation of state of CaSiO3 perovskite to 108 GPa at 300 K. Phys. Earth Planet. Inter. 2000, 120, 327–338. [Google Scholar] [CrossRef]
- Wang, Y.; Weidner, D.J.; Guyot, F. Thermal equation of state of CaSiO3 perovskite. J. Geophys. Res. 1996, 101, 661–672. [Google Scholar] [CrossRef]
- Shim, S.-H.; Duffy, T.; Shen, G. The stability and P-V-T equation of state of CaSiO3 perovskite in the Earth’s lower mantle. J. Geophys. Res. 2000, 105, 25955–25968. [Google Scholar] [CrossRef]
- Wang, Y.; Weidner, D.J. Thermoelasticity of CaSiO3 perovskite and implications for the lower mantle. Geophys. Res. Lett. 1994, 21, 895–898. [Google Scholar] [CrossRef]
- Stixrude, L.; Lithgow-Bertelloni, C.; Kiefer, B.; Fumagalli, P. Phase stability and shear softening in CaSiO3 perovskite at high pressure. Phys. Rew. B 2007, 75, 024108. [Google Scholar] [CrossRef]
- Li, L.; Weidner, D.J.; Brodholt, J.; Alfe, D.; Price, G.D.; Caracas, R.; Wentzcovitch, R. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys. Earth Planet. Inter. 2006, 155, 249–259. [Google Scholar] [CrossRef]
- Caracas, R.; Wentzcovitch, R.; Price, G.D.; Brodholt, J. CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett. 2005, 32, L06306. [Google Scholar] [CrossRef]
- Karki, B.B.; Crain, J. First-principles determination of elastic properties of CaSiO3 perovskite at lower mantle pressures. Geophys. Res. Lett. 1998, 25, 2741–2744. [Google Scholar] [CrossRef]
- Adams, D.J.; Oganov, A. Ab initio molecular dynamics study of CaSiO3 perovskite at P-T conditions of Earth’s lower mantle. Phys. Rev. B 2006, 73, 184106. [Google Scholar] [CrossRef]
- Shen, G.; Lazor, P. Measurement of melting temperatures of some minerals under lower mantle pressures. J. Geophys. Res. 1995, 100, 17699–17713. [Google Scholar] [CrossRef]
- Zerr, A.; Serghiou, G.; Boehler, R. Melting of CaSiO3 perovskite to 430 kbar and first in-situ measurements of lower mantle eutectic temperatures. Geophys. Res. Lett. 1997, 24, 909–912. [Google Scholar] [CrossRef]
- Nomura, R.; Zhou, Y.; Irifune, T. Melting phase relations in the MgSiO3–CaSiO3 system at 24 GPa. Prog. Earth Planet. Sci. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Braithwaite, J.; Stixrude, L. Melting of CaSiO3 perovskite at high pressure. Geophys. Res. Lett. 2019, 46, 2037–2044. [Google Scholar] [CrossRef] [PubMed]
- Dziewonski, A.; Anderson, D. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Stacey, F.D.; Davis, P.M. High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter. 2004, 142, 137–184. [Google Scholar] [CrossRef]
- Irifune, T.; Shinmei, T.; McCammon, C.A.; Miyajima, N.; Rubie, D.C.; Frost, D.J. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 2010, 327, 193–195. [Google Scholar] [CrossRef] [PubMed]
- Katsura, T.; Yoneda, A.; Yamazaki, D.; Yoshino, T.; Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 2010, 183, 212–218. [Google Scholar] [CrossRef]
- Sokolova, T.S.; Seredkina, A.I.; Dorogokupets, P.I. Density patterns of the upper mantle under Asia and the Arctic: Comparison of thermodynamic modeling and geophysical data. Pure Appl. Geophys. 2020, 177, 4289–4307. [Google Scholar] [CrossRef]
Parameters | Wol CaSiO3 | PsWol CaSiO3 | Brt CaSiO3 | β-Lrn Ca2SiO4 | Ca-Tit CaSi2O5 | Ca-Pv CaSiO3 |
---|---|---|---|---|---|---|
𝓤0, kJmol−1 | −1658.007 | −1655.531 | −1651.400 | −2344.025 | −2524.000 | −1567.400 |
V0, cm3mol−1 | 39.9 | 40.3 | 37.78 | 51.88 | 48.19 | 27.403 |
K0, GPa | 81.5 | 86 | 78.6 | 105 | 178 | 239 |
K’ | 3.28 | 3.8 | 4 | 6.27 | 4 | 4.13 |
k | 5 | 5 | 5 | 5 | 5 | 5 |
Θ01, K | 966 | 1039 | 952 | 838 | 975 | 935 |
m1 | 7.5 | 7.5 | 7.5 | 10.5 | 12 | 7.5 |
Θ02, K | 270 | 244 | 280 | 257 | 370 | 388 |
m2 | 7.5 | 7.5 | 7.5 | 10.5 | 12 | 7.5 |
γ0 | 1 | 1 | 0.745 | 1.263 | 1.3 | 1.913 |
γ∞ | 0 | 0 | 0 | 0 | 0 | 0 |
β | 1 | 1 | 1 | 1.041 | 1 | 0.486 |
a0, 10−6 K−1 | 20.8 | |||||
m | 1 |
P, GPa | T, K | V, cm3 mol−1 | α × 106, K−1 | S, Jmol−1 K−1 | CP, Jmol−1 K−1 | CV, Jmol−1 K−1 | KT, GPa | KS, GPa | ΔG, kJmol−1 |
---|---|---|---|---|---|---|---|---|---|
0.0001 | 298.15 | 39.900 | 26.458 | 81.358 | 86.715 | 86.037 | 81.50 | 82.14 | −1658.007 |
0.0001 | 500 | 40.147 | 33.714 | 132.366 | 108.976 | 107.159 | 79.66 | 81.01 | −1679.826 |
0.0001 | 1000 | 40.907 | 40.288 | 214.108 | 124.900 | 119.946 | 74.62 | 77.70 | −1768.341 |
0.0001 | 1398 | 41.596 | 43.519 | 256.827 | 130.068 | 122.310 | 70.44 | 74.91 | −1862.474 |
0.0001 | 2000 | 42.763 | 48.446 | 304.482 | 136.431 | 123.596 | 63.94 | 70.58 | −2032.169 |
3 | 298.15 | 38.536 | 23.175 | 78.447 | 84.890 | 84.327 | 91.20 | 91.81 | −1540.406 |
3 | 500 | 38.746 | 29.732 | 128.623 | 107.621 | 106.089 | 89.43 | 90.72 | −1561.542 |
3 | 1000 | 39.393 | 35.446 | 209.562 | 123.771 | 119.586 | 84.55 | 87.51 | −1647.956 |
3 | 1500 | 40.130 | 38.619 | 260.949 | 129.599 | 122.464 | 79.48 | 84.11 | −1766.352 |
3 | 2000 | 40.944 | 41.668 | 298.850 | 134.050 | 123.490 | 74.28 | 80.63 | −1906.702 |
Pressure Range, GPa | Temperature Range, K | Method | Reference |
---|---|---|---|
0–134 | 300 | XRD | [68] |
16.8–108 | 300 | XRD | [69] |
28–62 | 300 | XRD | [61] |
0.59–13 | 301–1600 | XRD | [70] |
18–96 | 1238–2419 | XRD | [71] |
51–130 | 700–2300 | XRD | [63] |
21.2–156 | 1200–2600 | XRD | [60] |
12–23 | 700–1700 | XRD | [64] |
Depth, km | P, GPa | T, K | Density, gcm−3 | Ks, GPa |
---|---|---|---|---|
2891 | 135.75 | 3739 | 5.483 | 686.56 |
2771 | 128.71 | 2838 | 5.499 | 673.01 |
2741 | 126.97 | 2740 | 5.492 | 668.35 |
2571 | 117.35 | 2668 | 5.412 | 637.46 |
2371 | 106.39 | 2596 | 5.317 | 601.82 |
2171 | 95.76 | 2525 | 5.220 | 566.86 |
1971 | 85.43 | 2452 | 5.122 | 532.51 |
1771 | 75.36 | 2379 | 5.022 | 498.60 |
1571 | 65.52 | 2302 | 4.920 | 465.04 |
1371 | 55.9 | 2227 | 4.814 | 431.71 |
1171 | 46.46 | 2144 | 4.705 | 398.53 |
971 | 37.29 | 2060 | 4.592 | 365.70 |
771 | 28.29 | 1974 | 4.474 | 332.80 |
670 | 23.83 | 1931 | 4.412 | 316.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sokolova, T.S.; Dorogokupets, P.I. Equations of State of Ca-Silicates and Phase Diagram of the CaSiO3 System under Upper Mantle Conditions. Minerals 2021, 11, 322. https://doi.org/10.3390/min11030322
Sokolova TS, Dorogokupets PI. Equations of State of Ca-Silicates and Phase Diagram of the CaSiO3 System under Upper Mantle Conditions. Minerals. 2021; 11(3):322. https://doi.org/10.3390/min11030322
Chicago/Turabian StyleSokolova, Tatiana S., and Peter I. Dorogokupets. 2021. "Equations of State of Ca-Silicates and Phase Diagram of the CaSiO3 System under Upper Mantle Conditions" Minerals 11, no. 3: 322. https://doi.org/10.3390/min11030322
APA StyleSokolova, T. S., & Dorogokupets, P. I. (2021). Equations of State of Ca-Silicates and Phase Diagram of the CaSiO3 System under Upper Mantle Conditions. Minerals, 11(3), 322. https://doi.org/10.3390/min11030322