Bioleaching of Uranium Tailings as Secondary Sources for Rare Earth Elements Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mineralogical and Physicochemical Characterization of U Tailings
2.2. Bioleaching Study
2.2.1. Inoculum Enrichment
2.2.2. Shake-Flask Experiments
2.2.3. Stirred Tank Bioreactor Experiments
2.3. Ion Exchange Separation
3. Results and Discussion
3.1. Characterization of the U Mine Tailings
3.2. Inoculum Enrichment
3.3. Shake-Flask Experiments
3.4. Stirred Tank Bioreactor Experiments
3.5. Selective Recovery of Lanthanides and Actinides from Bioleaching Solution Using Ion Exchange
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brandl, H.; Barmettler, F.; Castelberg, C.; Fabbri, C. Microbial mobilization of rare earth elements (REE) from mineral solids: A mini review. AIMS Microbiol. 2016, 3, 190–204. [Google Scholar] [CrossRef]
- Rasoulnia, P.; Barthen, R.; Lakaniemi, A.M. A critical review of bioleaching of rare earth elements: The mechanisms and effect of process parameters. Crit. Environ. Sci. Tech. 2020. [Google Scholar] [CrossRef]
- Hopfe, S.; Konsulke, S.; Barthen, R.; Lehmann, F.; Kutschke, S.; Pollmann, K. Screening and selection of technologically applicable microorganisms for recovery of rare earth elements from fluorescent powder. Waste Manag. 2018, 79, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Fathollahzadeh, H.; Eksteen, J.J.; Kaksonen, A.H.; Watkin, E.L.J. Role of microorganisms in bioleaching of rare earth elements from primary and secondary resources. Appl. Microbiol. Biotechnol. 2019, 103, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Kaksonen, A.H.; Lakaniemi, A.M.; Tuovinen, O.H. Acid and ferric sulfate bioleaching of uranium ores: A review. J. Cleaner Prod. 2020, 121586. [Google Scholar] [CrossRef]
- Whitty-Léveillée, L. Nouvelles Approches pour la Séparation des Actinides dans les Gisements de Terres Rares. Ph.D. Thesis, Laval University, Québec City, QC, Canada, 2019. [Google Scholar]
- Costis, S.; Mueller, K.K.; Coudert, L.; Neculita, C.M.; Reynier, N.; Blais, J.F. Recovery potential of rare earth elements from mining and industrial residues: A review and cases studies. J. Geochem. Explor. 2021, 221, 106699. [Google Scholar] [CrossRef]
- Munoz, J.A.; Gonzalez, F.; Blazquez, M.L.; Ballester, A. A Study of the bioleaching of a Spanish uranium ore. Part II: Orbital shaker experiments. Hydrometallurgy 1995, 38, 79–97. [Google Scholar] [CrossRef]
- Nerkar, D.P.; Lewis, N.F.; Kumta, U.S. Solubilization of uranium from low grade ores by bacteria. In Proceedings of the Symposium on Biological Approach to Problems in Medicine, Industry and Agriculture, Bombay, India, 12–14 March 1974. [Google Scholar]
- Choi, M.S.; Cho, K.S.; Kim, D.S.; Ryu, H.W. Bioleaching of uranium from low grade black schists by Acidithiobacillus ferrooxidans. World J. Microbiol. Biotechnol. 2005, 21, 377–380. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- McCready, R.G.L.; Wadden, D.; Marchbank, A. Nutrient requirements for the in-place leaching of uranium by Thiobacillus ferrooxidans. Hydrometallurgy 1986, 17, 61–71. [Google Scholar] [CrossRef]
- Abaka-Wood, G.B.; Addai-Mensah, J.; Skinner, W. Characterisation of Mining Tailings for the Beneficiation of Rare Earth Elements Minerals. In Proceedings of the UMaT Biennial International Mining and Mineral Conference, Tarkwa, Ghana, 4–7 August 2020. [Google Scholar]
- Lottermoser, B.G.; Ashley, P.M. Tailings dam seepage at the rehabilited Mary Kathleen uranium mine, Australia. J. Geochem. Explor. 2005, 85, 119–137. [Google Scholar] [CrossRef]
- Anju, M.; Banerjee, D.K. Comparison of two sequential extraction procedures for heavy metal partitioning in mine tailings. Chemosphere 2010, 78, 1393–1402. [Google Scholar] [CrossRef]
- Fathollahzadeh, H.; Khaleque, H.N.; Eksteen, J.; Kaksonen, A.H.; Watkin, E.L.J. Effect of glycine on bioleaching of rare earth elements from Western Australian monazite by heterotrophic and autotrophic microorganisms. Hydrometallurgy 2019, 189, 105–137. [Google Scholar] [CrossRef]
- Cochran, W.G. Estimation of bacterial densities by means of the most probable number. Biometrics 1950, 6, 105–116. [Google Scholar] [CrossRef] [PubMed]
Fraction | Matrix | Extraction Time | Temperature (°C) |
---|---|---|---|
Exchangeable | 8 mL of NaOAc (1 M), pH 7 | 1 h | 20 |
Bound to carbonates | 8 mL of NaOAc (1 M), pH 5.0 | Until equilibrium is reached | 20 |
Bound to Fe-Mn oxides | 20 mL of Na2S2O4 (0.3 M) + Na-citrate (0.175 M) + H-citrate (0.025 M) | Until equilibrium is reached | 96 |
Bound to organic matter | 3 mL of HNO3 (0.02 M) +5 mL of H2O2 (30%), pH 2.0; 3 mL of H2O2 (30%), pH 2.0; 5 mL of NH4OAc (3.2 M) in HNO3 (20% v/v) | 2 h 3 h 30 min | 85 85 20 |
Residual | Microwave aqua regia digestion (0.125 g of tailings) |
Elements Concentration | RAT | DT |
---|---|---|
Major elements (%) | ||
Mg | 0.34 | 0.06 |
Al | 1.31 | 1.07 |
K | 0.61 | 1.07 |
Ca | 0.13 | 0.09 |
Ti | 0.11 | 0.07 |
Fe | 2.2 | 0.89 |
Si | 31.8 | 42.2 |
S | 0.26 | 0.18 |
C | 6.0 | 4.7 |
Minor elements (mg/kg) | ||
Mn | 208 | 67.9 |
Ni | 263 | 7.25 |
Th | 146 | 204 |
U | 378 | 67.1 |
Sc | 0.9 | 0.0 |
Y | 28.4 | 31.7 |
La | 346 | 456 |
Ce | 619 | 827 |
Pr | 62.7 | 84.3 |
Nd | 204 | 270 |
Sm | 28.1 | 42.1 |
Eu | 1.5 | 1.2 |
Gd | 22 | 28.4 |
Tb | 2.5 | 2.5 |
Dy | 7.7 | 9.3 |
Ho | 1.3 | 1.3 |
Er | 4.0 | 3.6 |
Tm | 0.3 | 0.4 |
Yb | 1.9 | 1.7 |
Lu | 0.2 | 0.0 |
LREEs | 1262 | 1681 |
HREEs | 68.3 | 78.9 |
TREEs | 1330 | 1760 |
Mineral | Weight (%) | Mineral | Weight (%) |
---|---|---|---|
Quartz | 64.22 | Ferro-Actinolite | 0.09 |
Muscovite | 13.43 | Allanite-(Ce) | 0.08 |
Pyrite | 5.50 | Ilmenite | 0.08 |
Orthoclase | 3.42 | Hornblende | 0.08 |
Anorthite | 2.82 | Bannisterite | 0.06 |
Albite | 1.62 | Apatite | 0.06 |
Calcite | 1.16 | Kaolinite | 0.05 |
Kaersutite | 1.09 | Zircon | 0.04 |
Hematite/Magnetite | 1.06 | Jacobsite | 0.03 |
Magnesiogedrite | 0.69 | Diopside | 0.02 |
Plagioclase | 0.55 | Bastnasite | 0.02 |
Monazite | 0.54 | Titanite | 0.02 |
Actinolite | 0.50 | Chalcopyrite | 0.02 |
Biotite | 0.38 | Dolomite | 0.01 |
Ferrocarpholite | 0.29 | Schorl | 0.01 |
Columbite | 0.28 | Stibnite | 0.01 |
Anhydrite | 0.23 | Kyanite | 0.01 |
Rutile | 0.23 | Celestite | 0.01 |
Pyrrhotite | 0.22 | Enstatite-(Fe) | 0.01 |
Uraninite | 0.20 | Ankerite + clay | 0.01 |
Ferrosaponite | 0.18 | Covellite | 0.01 |
Garnet–Pyrope | 0.17 | Pentlandite | 0.01 |
Ankerite | 0.12 | Sphalerite | 0.01 |
Ankerite + clay (Fe) | 0.12 | Nepheline | 0.01 |
Baryte | 0.10 | Other | 0.03 |
Wollastonite | 0.10 | Total | 100 |
RAT | DT | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Exchangeable Ions | Weak Acid Soluble | Fe-Mn Oxide | Bound to Organic Matter | Residual | Exchangeable Ions | Weak Acid Soluble | Fe-Mn Oxide | Bound to Organic Matter | Residual | |
Fe | 0.0 | 2.2 | 4.6 | 3.7 | 89.5 | 0.0 | 1.8 | 12.3 | 0.0 | 86.0 |
Mn | 6.3 | 12.9 | 11.9 | 4.4 | 64.5 | 25.7 | 27.4 | 27.2 | 0.0 | 19.7 |
U | 5.0 | 87.8 | 0.0 | 1.7 | 5.5 | 17.1 | 22.5 | 19.7 | 2.0 | 38.7 |
Th | 0.0 | 33.5 | 26.6 | 0.0 | 39.9 | 0.0 | 13.5 | 71.7 | 0.0 | 14.8 |
Ce | 0.1 | 2.3 | 1.1 | 0.0 | 96.4 | 0.1 | 2.2 | 7.8 | 0.0 | 89.9 |
Pr | 0.1 | 2.8 | 1.3 | 0.0 | 95.8 | 0.1 | 2.7 | 10.9 | 0.0 | 86.3 |
Sm | 0.3 | 7.1 | 3.1 | 0.0 | 89.5 | 0.4 | 7.6 | 23.0 | 0.0 | 69.0 |
Eu | 0.4 | 10.4 | 4.4 | 0.1 | 84.7 | 0.6 | 11.6 | 30.9 | 0.0 | 56.9 |
Gd | 0.6 | 13.3 | 5.3 | 0.0 | 80.9 | 0.9 | 14.5 | 32.7 | 0.0 | 51.8 |
Tb | 0.8 | 24.5 | 9.7 | 0.0 | 65.4 | 1.0 | 21.5 | 44.6 | 0.0 | 32.9 |
Dy | 0.9 | 33.6 | 12.4 | 0.0 | 53.0 | 1.2 | 26.9 | 48.3 | 0.0 | 23.6 |
Ho | 1.0 | 38.5 | 13.7 | 0.0 | 46.8 | 1.3 | 30.7 | 48.2 | 0.0 | 19.8 |
Er | 0.7 | 35.5 | 12.4 | 15.1 | 36.2 | 0.9 | 23.7 | 34.0 | 32.8 | 8.7 |
Tm | 0.5 | 42.8 | 15.2 | 0.0 | 41.5 | 0.9 | 34.2 | 48.5 | 0.0 | 16.4 |
Yb | 0.4 | 38.3 | 15.1 | 0.0 | 46.2 | 0.7 | 33.2 | 49.4 | 0.0 | 16.6 |
Lu | 0.3 | 40.4 | 14.3 | 0.6 | 44.3 | 0.9 | 36.3 | 45.8 | 0.0 | 17.0 |
Temperature (°C) | Week | Th | U | Mean LREEs | Mean HREEs | ORP |
---|---|---|---|---|---|---|
20 | 1 | 2 | 19 | 1 | 9 | 481 |
20 | 2 | 9 | 78 | 2 | 20 | 525 |
20 | 3 | 21 | 74 | 3 | 24 | 540 |
20 | 4 | 23 | 75 | 3 | 23 | 505 |
20 | 8 | 25 | 73 | 3 | 21 | 509 |
20–Duplicate | 1 | 3 | 20 | 1 | 9 | 542 |
20–Duplicate | 2 | 2 | 62 | 2 | 14 | 555 |
20–Duplicate | 3 | 14 | 69 | 2 | 18 | 568 |
20–Duplicate | 4 | 23 | 87 | 3 | 24 | 555 |
20–Duplicate | 8 | 26 | 69 | 3 | 21 | 528 |
30 | 1 | 4 | 18 | 1 | 11 | 429 |
30 | 2 | 16 | 66 | 2 | 18 | 519 |
30 | 3 | 23 | 66 | 3 | 21 | 556 |
30 | 4 | 26 | 69 | 3 | 23 | 565 |
30 | 8 | 42 | 85 | 4 | 35 | 586 |
40 | 1 | 4 | 18 | 1 | 10 | 413 |
40 | 2 | 21 | 68 | 3 | 22 | 523 |
40 | 3 | 18 | 62 | 2 | 20 | 504 |
40 | 4 | 26 | 68 | 3 | 25 | 513 |
40 | 8 | 35 | 69 | 4 | 33 | 529 |
Temperature (°C) | Week | Th | U | Mean LREEs | Mean HREEs | ORP |
---|---|---|---|---|---|---|
20 | 1 | 3 | 10 | 1 | 16 | 432 |
20 | 2 | 28 | 26 | 3 | 41 | 435 |
20 | 3 | 64 | 34 | 6 | 57 | 500 |
20 | 4 | 90 | 45 | 7 | 68 | 505 |
20 | 8 | 81 | 46 | 8 | 67 | 537 |
20–Duplicate | 1 | 8 | 15 | 2 | 21 | 549 |
20–Duplicate | 2 | 39 | 30 | 4 | 45 | 569 |
20–Duplicate | 3 | 74 | 38 | 7 | 61 | 583 |
20–Duplicate | 4 | 89 | 46 | 7 | 64 | 553 |
20–Duplicate | 8 | 81 | 41 | 7 | 62 | 577 |
30 | 1 | 7 | 13 | 2 | 21 | 473 |
30 | 2 | 54 | 32 | 5 | 53 | 544 |
30 | 3 | 74 | 39 | 7 | 62 | 543 |
30 | 4 | 76 | 41 | 6 | 56 | 565 |
30 | 8 | 74 | 50 | 7 | 71 | 596 |
40 | 1 | 2 | 10 | 1 | 12 | 500 |
40 | 2 | 58 | 34 | 6 | 53 | 537 |
40 | 3 | 68 | 39 | 6 | 54 | 521 |
40 | 4 | 68 | 42 | 5 | 49 | 523 |
40 | 8 | 65 | 36 | 7 | 70 | 590 |
Week | Th (%) | U (%) | LREEs (%) | HREEs (%) | ||||
---|---|---|---|---|---|---|---|---|
OS | STB | OS | STB | OS | STB | OS | STB | |
RAT | ||||||||
1 | 4.2 | 57 | 18 | 48 | 1.3 | 4.6 | 11 | 50 |
2 | 16 | 59 | 66 | 49 | 2.0 | 5.0 | 18 | 51 |
3 | 23 | 61 | 66 | 50 | 2.5 | 5.2 | 21 | 45 |
4 | 26 | 60 | 69 | 51 | 2.5 | 5.8 | 23 | 54 |
DT | ||||||||
1 | 6.7 | 35 | 13 | 53 | 1.6 | 5.5 | 21 | 35 |
2 | 54 | 72 | 32 | 75 | 5.4 | 12 | 53 | 48 |
3 | 74 | 81 | 39 | 87 | 6.7 | 14 | 62 | 55 |
4 | 76 | 85 | 42 | 89 | 6.0 | 14 | 56 | 58 |
Elements | Concentration (mg/L) |
---|---|
Fe | 630 |
Th | 17.9 |
U | 16.4 |
Sc | 0.04 |
Y | 2.71 |
La | 2.47 |
Ce | 5.16 |
Pr | 0.63 |
Nd | 2.30 |
Sm | 0.74 |
Eu | 0.05 |
Gd | 0.77 |
Tb | 0.13 |
Dy | 0.74 |
Ho | 0.12 |
Er | 0.33 |
Tm | 0.04 |
Yb | 0.24 |
Lu | 0.03 |
Name | Resin Type | Functional Group | Sc (%) | Fe (%) | Th (%) | U (%) | LREEs (%) | HREEs (%) |
---|---|---|---|---|---|---|---|---|
Dowex 21K-XLT | SBA | Quaternary amine | 0 | 0 | 14 | 77 | 3 | 3 |
Lewatit MP500 | SBA | Quaternary amine | 4 | 0 | 14 | 93 | 1 | 1 |
Purolite A500 | SBA | Quaternary amine | 28 | 0 | 7 | 85 | 3 | 4 |
Lewatit K7367 | SBA | Quaternary amine | 10 | 0 | 9 | 85 | 2 | 2 |
Reillex 425 | WBA | Poly-4-vinylpyridine | 13 | 0 | 52 | 97 | 4 | 3 |
Reillex HPQ | SBA | Quaternary amine | 0 | 0 | 14 | 80 | 4 | 3 |
Lewatit A365 | WBA | Polyamine | 18 | 0 | 28 | 74 | 3 | 3 |
Amberlite IR120 | SAC | Sulfonic | 15 | 9 | 20 | 5 | 61 | 48 |
Lewatit SP112 | SAC | Sulfonic | 0 | 12 | 57 | 3 | 81 | 65 |
Amberlite IRN77 | SAC | Sulfonic | 13 | 26 | 44 | 6 | 85 | 75 |
Rhom & Haas GT73 | Chelating | Thiol | 0 | 1 | 26 | 14 | 63 | 38 |
Lewatit TP214 | Chelating | Thiourea | 13 | 0 | 11 | 31 | 3 | 3 |
Dowex M4195 | Chelating | Bis-picolylamine | 2 | 2 | 15 | 84 | 7 | 5 |
Lewatit TP260 | Chelating | Amino methyl phosphonic | 69 | 28 | 55 | 93 | 30 | 30 |
Lewatit TP207 | Chelating | Iminodiacetate | 0 | 22 | 23 | 24 | 4 | 4 |
Diphonix | Analytical | Diphosphonic and sulfonic | 55 | 44 | 56 | 42 | 20 | 19 |
UTEVA | Analytical | Diamyl, amylphosphonate | 0 | 0 | 5 | 0 | 3 | 3 |
RE resin | Analytical | CMPO | 0 | 0 | 7 | 7 | 2 | 3 |
Lewatit VPOC 026 | Impregnated | D2EHPA | 65 | 21 | 69 | 71 | 4 | 25 |
Lewatit TP272 | Impregnated | Trimethylpentyl-phosphinic | 94 | 13 | 11 | 99 | 4 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors and Her Majesty the Queen in Right of Canada. Licen-see MDPI, Basel, Switzerland. This article is an open access article dis-tributed under the terms and condi-tions of the Creative Commons At-tribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reynier, N.; Gagné-Turcotte, R.; Coudert, L.; Costis, S.; Cameron, R.; Blais, J.-F. Bioleaching of Uranium Tailings as Secondary Sources for Rare Earth Elements Production. Minerals 2021, 11, 302. https://doi.org/10.3390/min11030302
Reynier N, Gagné-Turcotte R, Coudert L, Costis S, Cameron R, Blais J-F. Bioleaching of Uranium Tailings as Secondary Sources for Rare Earth Elements Production. Minerals. 2021; 11(3):302. https://doi.org/10.3390/min11030302
Chicago/Turabian StyleReynier, Nicolas, Roselyne Gagné-Turcotte, Lucie Coudert, Sophie Costis, Rory Cameron, and Jean-Francois Blais. 2021. "Bioleaching of Uranium Tailings as Secondary Sources for Rare Earth Elements Production" Minerals 11, no. 3: 302. https://doi.org/10.3390/min11030302
APA StyleReynier, N., Gagné-Turcotte, R., Coudert, L., Costis, S., Cameron, R., & Blais, J. -F. (2021). Bioleaching of Uranium Tailings as Secondary Sources for Rare Earth Elements Production. Minerals, 11(3), 302. https://doi.org/10.3390/min11030302