Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian’an Coalfield, Guangxi Province
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
4. Results
4.1. Standard Coal Characteristics
4.2. Mineralogy
4.2.1. Mineral Phases
4.2.2. Mode of Occurrence of Minerals
4.3. Geochemistry
4.3.1. Major Elements
4.3.2. Trace Elements
4.3.3. Rare Earth Elements and Y (REY)
5. Discussion
5.1. Source of Detrital Materials
5.2. Origin of Highly Elevated Concentrations of the REY–Se–Pb–Mo–U Assemblage
5.3. Potential Economic Significance of REY in the Coals and Non-Coal Rocks
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Seredin, V.V.; Li, D.; Zhang, M.; Hower, J.C.; Ward, C.R.; Wang, X.; Zhao, L.; et al. Coal-hosted rare metal deposits: Genetic types, modes of occurrence, and utilization evaluation. J. China Coal Soc. 2014, 39, 1707–1715, (In Chinese with English Abstract). [Google Scholar]
- Hower, J.C.; Granite, E.J.; Mayfield, D.B.; Lewis, A.S.; Finkelman, R.B. Notes on contributions to the science of rare earth ele-ment enrichment in coal and coal combustion byproducts. Minerals 2016, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Hower, J.C.; Qian, D.; Briot, N.J.; Hood, M.M.; Eble, C.F. Mineralogy of a rare earth element-rich Manchester coal lithotype, Clay County, Kentucky. Int. J. Coal Geol. 2020, 220, 103413. [Google Scholar] [CrossRef]
- Li, B.; Zhuang, X.; Querol, X.; Moreno, N.; Córdoba, P.; Shangguan, Y.; Yang, L.; Li, J.; Zhang, F. Geological controls on the distribution of REY-Zr (Hf)-Nb (Ta) enrichment horizons in late Permian coals from the Qiandongbei Coalfield, Guizhou Province, SW China. Int. J. Coal Geol. 2020, 231, 103604. [Google Scholar] [CrossRef]
- Seredin, V.V.; Finkelman, R.B. Metalliferous coals: A review of the main genetic and geochemical types. Int. J. Coal Geol. 2008, 76, 253–289. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, Y.; Ren, D.; Wang, X.; Li, D.; Zhao, L. Geochemistry and mineralogy of the Late Permian coals from the Songzo Coalfield, Chongqing, southwestern China. Sci. China Ser. D Earth Sci. 2007, 50, 678–688. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A re-view of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Ward, C.R.; Seredin, V.V.; Hower, J.C.; Li, X.; Song, W.; Wang, X.; Kang, H.; Zheng, L.; et al. Mineralogical and geochemical anomalies of late Permian coals from the Fusui Coalfield, Guangxi Province, southern China: Influences of terrigenous materials and hydrothermal fluids. Int. J. Coal Geol. 2013, 105, 60–84. [Google Scholar] [CrossRef]
- Dai, S.; Luo, Y.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.; Zhao, C.; Tian, H.; Zou, J. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Dai, S.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.; Wang, X. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Dai, S.; Liu, J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical com-positions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on en-richment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Jia, S.; Ward, C.R.; Hower, J.C.; Yan, X.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Dai, S.; Xie, P.; Ward, C.R.; Yan, X.; Guo, W.; French, D.; Graham, I.T. Anomalies of rare metals in Lopingian superhigh-organic-sulfur coals from the Yishan Coalfield, Guangxi. China. Ore Geol. Rev. 2017, 88, 235–250. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Li, B.; Zhuang, X.; Querol, X.; Li, J.; Moreno, N.; Córdoba, P.; Shangguan, Y.; Zhou, J.; Ma, X.; Liu, S. Geological controls on enrichment of Mn, Nb (Ta), Zr (Hf), and REY within the Early Permian coals of the Jimunai Depression, Xinjiang Province, NW China. Int. J. Coal Geol. 2019, 215, 103298. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Dai, S.; Nechaev, V.P.; Graham, I.T.; French, D.; Nechaeva, E.V. Mineralization of REE-Y-Nb-Ta-Zr-Hf in Wuchiapingian coals from the Liupanshui Coalfield, Guizhou, southwestern China: Geochemical evidence for terrigenous input. Ore Geol. Rev. 2019, 115, 103190. [Google Scholar] [CrossRef]
- Wang, Z.; Dai, S.; Zou, J.; French, D.; Graham, I.T. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. Int. J. Coal Geol. 2019, 203, 1–14. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Zhuang, X.; Su, S.; Xiao, M.; Li, J.; Alastuey, A.; Querol, X. Mineralogy and geochemistry of the Late Permian coals in the Huayingshan coal-bearing area, Sichuan Province, China. Int. J. Coal Geol. 2012, 94, 271–282. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Spears, D.A.; Vergunov, A.V.; Ilenok, S.S.; Mezhibor, A.M.; Ivanov, V.P.; Zarubina, N.A. Geochemistry, miner-alogy and genesis of rare metal (Nb-Ta-Zr-Hf-Y-REE-Ga) coals of the seam XI in the south of Kuznetsk Basin, Russia. Ore Geol. Rev. 2019, 113, 103073. [Google Scholar] [CrossRef]
- Nechaev, V.; Chekryzhov, I.; Vysotskiy, S.; Ignatiev, A.; Velivetskaya, T.; Tarasenko, I.; Agoshkov, A. Isotopic signatures of REY mineralization associated with lignite basins in South Primorye, Russian Far East. Ore Geol. Rev. 2018, 103, 68–77. [Google Scholar] [CrossRef]
- Nechaev, V.P.; Bechtel, A.; Dai, S.; Chekryzhov, I.Y.; Pavlyutkin, B.I.; Vysotskiy, S.V.; Ignatiev, A.V.; Velivetskaya, T.A.; Guo, W.; Tarasenko, I.A.; et al. Bio-geochemical evolution and critical element mineralization in the Cretaceous-Cenozoic coals from the southern Far East Russia and northeastern China. Appl. Geochem. 2020, 117, 104602. [Google Scholar] [CrossRef]
- Seredin, V. Rare earth element-bearing coals from the Russian Far East deposits. Int. J. Coal Geol. 1996, 30, 101–129. [Google Scholar] [CrossRef]
- Hower, J.C.; Ruppert, L.F.; Eble, C.F. Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky. Int. J. Coal Geol. 1999, 39, 141–153. [Google Scholar] [CrossRef]
- Hower, J.C.; Eble, C.F.; Dai, S.; Belkin, H.E. Distribution of rare earth elements in eastern Kentucky coals: Indicators of multi-ple modes of enrichment. Int. J. Coal Geol. 2016, 160–161, 73–81. [Google Scholar] [CrossRef]
- Hower, J.C.; Qian, D.; Briot, N.J.; Henke, K.R.; Hood, M.M.; Taggart, R.K.; Hsu-Kim, H. Rare earth element associations in the Kentucky State University stoker ash. Int. J. Coal Geol. 2018, 189, 75–82. [Google Scholar] [CrossRef]
- Lin, R.; Soong, Y.; Granite, E.J. Evaluation of trace elements in U.S. coals using the USGS COALQUAL database version 3.0. Part I: Rare earth elements and yttrium (REY). Int. J. Coal Geol. 2018, 192, 1–13. [Google Scholar] [CrossRef]
- Mardon, S.M.; Hower, J.C. Impact of coal properties on coal combustion byproduct quality: Examples from a Kentucky power plant. Int. J. Coal Geol. 2004, 59, 153–169. [Google Scholar] [CrossRef]
- Li, B.; Zhuang, X.; Querol, X.; Moreno, N.; Córdoba, P.; Li, J.; Zhou, J.; Ma, X.; Liu, S.; Shangguan, Y. The mode of occurrence and origin of minerals in the Early Permian high-rank coals of the Jimunai depression, Xinjiang Uygur Autonomous Region, NW China. Int. J. Coal Geol. 2019, 205, 58–74. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109–110, 77–100. [Google Scholar] [CrossRef]
- Shao, L.; Jones, T.; Gayer, R.; Dai, S.; Li, S.; Jiang, Y.; Zhang, P. Petrology and geochemistry of the high-sulphur coals from the Upper Permian carbonate coal measures in the Heshan Coalfield, southern China. Int. J. Coal Geol. 2003, 55, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Zeng, R.; Zhuang, X.; Koukouzas, N.; Xu, W. Characterization of trace elements in sulphur-rich Late Permian coals in the Heshan coal field, Guangxi, South China. Int. J. Coal Geol. 2005, 61, 87–95. [Google Scholar] [CrossRef]
- Feng, Z.Z.; Jin, Z.K.; Yang, Y.Q.; Pao, Z.D.; Xin, W.J. Lithofacies Paleogeography of Permian of Yunnan–Guizhou–Guangxi Region; Geological Publishing House: Beijing, China, 1994; p. 146, (In Chinese with English Abstract). [Google Scholar]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Zhang, Z. Framwork of lithofacies and palaeogeography in the Permian in Guangxi. Guangxi Geol. 1994, 7, 1–12, (In Chinese with English Abstract). [Google Scholar]
- ASTM Standard D3173-11. Standard Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3174-11. Annual book of ASTM standards. In Test Method for Ash in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3175-11. Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM D3177-02. Standard Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Chung, F.H. Quantitative interpretation of X-ray diffraction patterns of mixtures: I. Matrix flushing method for quantitative multicomponent analysis. J. Appl. Crystalogr. 1974, 7, 519–525. [Google Scholar] [CrossRef]
- Klug, H. Alexander L: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1974. [Google Scholar]
- Querol, X.; Whateley, M.; Fernández-Turiel, J.; Tuncali, E. Geological controls on the mineralogy and geochemistry of the Beypazari lignite, central Anatolia, Turkey. Int. J. Coal Geol. 1997, 33, 255–271. [Google Scholar] [CrossRef]
- China National Standardization Management Committee. Methods for Chemical Analysis of Silicate Rocks–Part 28: Determination of 16 Major and Minor Elements Content; GB/T 14506.28–2010; China National Standardization Management Committee: Beijing, China, 2010. (In Chinese) [Google Scholar]
- Chou, C.-L. Sulfur in coals: A review of geochemistry and origins. Int. J. Coal Geol. 2012, 100, 1–13. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis and significance of mineral matter in coal seams. Int. J. Coal Geol. 2002, 50, 135–168. [Google Scholar] [CrossRef]
- Ward, C.R. Analysis, origin and significance of mineral matter in coal: An updated review. Int. J. Coal Geol. 2016, 165, 1–27. [Google Scholar] [CrossRef]
- Ketris, M.; Yudovich, Y. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coal-field, Guizhou, China. Mineral. Deposita. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Li, B.; Zhuang, X.; Li, J.; Querol, X.; Font, O.; Moreno, N.; Palmerola, N.M. Geological controls on mineralogy and geochemistry of the Late Permian coals in the Liulong Mine of the Liuzhi Coalfield, Guizhou Province, Southwest China. Int. J. Coal Geol. 2016, 154-155, 1–15. [Google Scholar] [CrossRef]
- Hayashi, K.I.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta. 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Karayigit, A.; Atalay, M.; Oskay, R.; Córdoba, P.; Querol, X.; Bulut, Y. Variations in elemental and mineralogical composi-tions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. Int. J. Coal Geol. 2020, 218, 103366. [Google Scholar] [CrossRef]
- Bohor, B.F.; Triplehorn, D.M. Tonsteins: Altered volcanic-ash layers in coal-bearing sequences. Geol. Soc. Am. Spec. Pap. 1993, 285, 44. [Google Scholar]
- Burger, K.; Bandelow, F.K.; Bieg, G. Pyroclastic kaolin coal–tonsteins of the Upper Carboniferous of Zonguldak and Amasra, Turkey. Int. J. Coal Geol. 2000, 45, 39–53. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhou, Y.; Zhang, M.; Song, X.; Song, W.; Zhao, C. Origin of minerals and elements in the Late Permian coals, tonsteins, and host rocks of the Xinde Mine, Xuanwei, eastern Yunnan, China. Int. J. Coal Geol. 2014, 121, 53–78. [Google Scholar] [CrossRef]
- Dai, S.; Ward, C.R.; Graham, I.T.; French, D.; Hower, J.C.; Zhao, L.; Wang, X. Altered volcanic ashes in coal and coal-bearing sequences: A review of their nature and significance. Earth-Sci. Rev. 2017, 175, 44–74. [Google Scholar] [CrossRef]
- Arbuzov, S.; Volostnov, A.; Rikhvanov, L.; Mezhibor, A.; Ilenok, S. Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). Int. J. Coal Geol. 2011, 86, 318–328. [Google Scholar] [CrossRef]
- Arbuzov, S.I.; Mezhibor, A.M.; Spears, D.A.; Ilenok, S.S.; Shaldybin, M.V.; Belaya, E.V. Nature of tonsteins in the Azeisk de-posit of the Irkutsk Coal Basin (Siberia, Russia). Int. J. Coal Geol. 2016, 153, 99–111. [Google Scholar] [CrossRef]
- Karayiğit, A.I.; Oskay, R.G.; Gayer, R.A. Mineralogy and geochemistry of feed coals and combustion residues of the Kangal power plant (Sivas, Turkey). Turk. J. Earth Sci. 2019, 28, 438–456. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Graham, I.T.; Li, X.; Zhang, B. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction. Lithos 2016, 264, 375–391. [Google Scholar] [CrossRef]
Sample | Thickness | Mad | Vdaf | Ad | St,d |
---|---|---|---|---|---|
SL-8 | 0.40 | 7.6 | 33.1 | 46.5 | 1.45 |
SL-13 | 0.75 | 2.2 | 22.9 | 62.0 | 2.25 |
SL-15 | 0.35 | 14.0 | 40.7 | 37.1 | 3.09 |
SL-16 | 0.35 | 14.3 | 40.8 | 40.1 | 2.86 |
SL-21 | 0.25 | 10.7 | 47.3 | 66.8 | 1.99 |
SL-22 | 0.25 | 5.7 | 56.4 | 79.7 | 1.07 |
SL-23 | 0.25 | 13.3 | 40.7 | 36.4 | 1.52 |
SL-25 | 0.25 | 12.5 | 47.0 | 51.2 | 1.06 |
Sample | Muscovite | Kaolinite | Dickite + Kaolinite | Rectorite | Quartz | Pyrite | Hematite | Anatase |
---|---|---|---|---|---|---|---|---|
SL-11 | <dl | <dl | 91.1 | <dl | 3.3 | 4.1 | <dl | 1.6 |
SL-13 | <dl | 11.8 | <dl | <dl | 47.1 | <dl | 2.7 | 0.5 |
SL-10 | <dl | <dl | 89.2 | <dl | 6.4 | 2.8 | <dl | 1.7 |
SL-09 | <dl | <dl | 88.9 | <dl | 6.5 | 3.0 | <dl | 1.4 |
SL-26 | 3.2 | 16.3 | <dl | <dl | 80.2 | <dl | <dl | 0.3 |
SL-25 | 2.4 | 1.7 | <dl | <dl | 47.1 | <dl | <dl | <dl |
SL-24 | 5.2 | 1.9 | <dl | <dl | 92.8 | <dl | <dl | 0.2 |
SL-23 | 13.7 | 2.0 | <dl | <dl | 20.3 | <dl | <dl | 0.5 |
SL-22 | 1.1 | 2.9 | <dl | <dl | 75.3 | <dl | <dl | 0.4 |
SL-21 | 12.9 | 4.7 | <dl | <dl | 49.2 | <dl | <dl | <dl |
SL-20 | <dl | <dl | 5.0 | <dl | 94.8 | <dl | <dl | 0.2 |
SL-19 | 22.6 | 5.8 | <dl | 38.6 | 32.6 | <dl | <dl | 0.4 |
SL-18 | <dl | <dl | <dl | <dl | 100.0 | <dl | <dl | <dl |
SL-16 | 13.8 | 4.0 | <dl | <dl | 21.6 | <dl | <dl | 0.8 |
SL-15 | 12.7 | 1.9 | <dl | <dl | 22.2 | <dl | <dl | 0.3 |
SL-08 | 12.2 | 17.0 | <dl | <dl | 17.2 | <dl | <dl | 0.2 |
SL-07 | <dl | 98.0 | <dl | <dl | <dl | <dl | <dl | 2.0 |
SL-06 | <dl | 97.7 | <dl | <dl | <dl | <dl | <dl | 2.3 |
Sample | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | P2O5 |
---|---|---|---|---|---|---|---|---|---|
SL-6 | 45 | 1.5 | 39 | 0.67 | 0.17 | 0.01 | 0.1 | 0.39 | 0.01 |
SL-7 | 44 | 1.2 | 37 | 0.81 | 0.14 | 0.04 | 0.1 | 0.23 | 0.02 |
SL-8 | 28 | 0.27 | 9.2 | 2.2 | 0.25 | 0.09 | 0.07 | 1.2 | 0.01 |
SL-15 | 23 | 0.31 | 9.9 | 2.4 | 0.35 | 0.1 | 0.06 | 1.4 | 0.01 |
SL-16 | 26 | 0.57 | 9.9 | 1.8 | 0.3 | 0.11 | 0.06 | 1.4 | 0.02 |
SL-18 | 96 | 0.02 | 0.78 | 2.4 | 0.03 | 0.15 | 0.02 | 0.04 | 0.01 |
SL-19 | 63 | 0.32 | 23 | 3.8 | 1.3 | 0.08 | 0.35 | 2.7 | 0.05 |
SL-20 | 92 | 0.14 | 5.1 | 1.2 | 0.17 | 0.14 | 0.07 | 0.41 | 0.01 |
SL-21 | 50 | 0.25 | 12 | 2.3 | 0.62 | 0.12 | 0.07 | 1.1 | 0.02 |
SL-22 | 65 | 0.42 | 7.7 | 4.6 | 0.36 | 0.12 | 0.05 | 0.87 | 0.02 |
SL-23 | 27 | 0.04 | 3.4 | 4.4 | 0.08 | 0.06 | 0.04 | 0.42 | 0.01 |
SL-24 | 87 | 0.18 | 6.6 | 3.8 | 0.28 | 0.26 | 0.05 | 0.6 | 0.01 |
SL-25 | 45 | 0.02 | 4.2 | 0.9 | 0.11 | 0.08 | 0.03 | 0.35 | 0.01 |
SL-26 | 77 | 0.31 | 12 | 5.3 | 0.37 | 0.26 | 0.94 | 3.3 | 0.03 |
SL-9 | 42 | 0.73 | 30 | 5.7 | 0.65 | 0.02 | 0.49 | 1 | 0.01 |
SL-10 | 43 | 0.99 | 31 | 5 | 0.38 | 0.02 | 0.26 | 0.7 | 0.02 |
SL-13 | 45 | 0.29 | 7.7 | 8.2 | 0.3 | 0.1 | 0.1 | 0.63 | 0.02 |
SL-11 | 41 | 0.65 | 31 | 5.8 | 0.77 | 0.07 | 0.31 | 0.57 | <dl |
Element | SL-6 | SL-7 | SL-8 | SL-15 | SL-16 | SL-18 | SL-19 | SL-20 | SL-21 | SL-22 | SL-23 | SL-24 | SL-25 | SL-26 | SL-9 | SL-10 | SL-13 | SL-11 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Li | 377 | 277 | 17 | 10 | 27 | 4.0 | 171 | 22 | 20 | 17 | 8.3 | 14 | 5.7 | 33 | 175 | 231 | 90 | 233 |
Be | 1.5 | 1.2 | 1.4 | <dl | 1.7 | <dl | 1.0 | <dl | 2.0 | <dl | 1.4 | <dl | 1.6 | 1.4 | 0.85 | 1.1 | <dl | 0.80 |
B | 298 | 375 | 20 | 4.1 | 4.1 | 9.9 | 8.8 | 9.6 | 6.1 | 24 | 18 | 28 | 18 | 32 | 658 | 319 | 0.87 | 181 |
Sc | 25 | 17 | 7.6 | 10.0 | 9.9 | <dl | 6.3 | 4.2 | 8.2 | 6.2 | 8.3 | 5.9 | 4.7 | 17 | 18 | 21 | 5.5 | 21 |
V | 333 | 132 | 317 | 419 | 262 | 31 | 155 | 205 | 277 | 314 | 270 | 283 | 337 | 446 | 143 | 125 | 224 | 70 |
Cr | 395 | 358 | 169 | 271 | 174 | 32 | 32 | 276 | 209 | 121 | 62 | 119 | 196 | 401 | 70 | 37 | 75 | 22 |
Mn | 4.0 | 2.5 | 6.9 | 8.1 | 7.0 | 67 | 11 | 29 | 18 | 88 | 18 | 44 | 18 | 76 | 25 | 11 | 11 | 26 |
Co | 2.3 | 2.8 | <dl | <dl | <dl | 1.7 | 1.4 | 1.3 | 1.6 | 2.0 | 1.4 | 1.5 | 1.8 | 9.5 | 2.2 | 1.4 | <dl | 2.6 |
Ni | 29 | 31 | 3.4 | 5.9 | 2.6 | 11 | 21 | 14 | 7.0 | 6.5 | 6.7 | 9.8 | 11 | 111 | 7.0 | 3.9 | 3.5 | 7.5 |
Cu | 6.1 | 2.5 | 38 | 34 | 31 | 12 | 7.9 | 13 | 37 | 34 | 76 | 22 | 58 | 40 | 4.2 | 1.5 | 12 | 4.5 |
Zn | 15 | 15 | 18 | 25 | 21 | 23 | 116 | 31 | 35 | 17 | 20 | 25 | 29 | 208 | 16 | 11 | 29 | 29 |
Ga | 35 | 27 | 18 | 14 | 13 | 1.5 | 22 | 7.7 | 37 | 26 | 45 | 15 | 30 | 18 | 28 | 37 | 12 | 29 |
Ge | 1.1 | <dl | 0.73 | 1.4 | 1.2 | <dl | 0.85 | 1.2 | 6.1 | 4.1 | 8.6 | 2.5 | 6.2 | 2.9 | 1.9 | 1.2 | 2.1 | 0.98 |
As | 6.6 | 12 | 44 | 44 | 33 | 11 | 52 | 9.3 | 40 | 66 | 57 | 56 | 20 | 67 | 26 | 22 | 72 | 9.9 |
Se | 2.4 | 1.4 | 8.4 | 5.4 | 5.2 | <dl | 6.3 | 4.1 | 32 | 26 | 57 | 16 | 38 | 16 | 2.8 | 2.7 | 5.8 | 2.0 |
Rb | 14 | 8.4 | 33 | 39 | 34 | 2.7 | 111 | 18 | 42 | 34 | 16 | 24 | 15 | 37 | 38 | 31 | 29 | 21 |
Sr | 13 | 20 | 40 | 34 | 34 | 21 | 116 | 39 | 42 | 56 | 11 | 64 | 16 | 93 | 33 | 28 | 75 | 18 |
Y | 30 | 36 | 52 | 47 | 50 | 2.1 | 17 | 21 | 107 | 47 | 115 | 34 | 109 | 50 | 35 | 36 | 44 | 28 |
Zr | 787 | 617 | 141 | 185 | 159 | 19 | 126 | 59 | 159 | 95 | 32 | 64 | 41 | 109 | 398 | 505 | 213 | 432 |
Nb | 55 | 74 | 5.6 | 16 | 12 | 1.6 | 5.9 | 4.9 | 6.6 | 5.9 | 0.61 | 5.0 | 1.1 | 6.4 | 21 | 20 | 25 | 13 |
Mo | 6.5 | 12 | 162 | 171 | 189 | 11 | 41 | 13 | 76 | 122 | 84 | 132 | 4.8 | 27 | 16 | 5.5 | 46 | 4.5 |
Sn | 5.2 | 6.5 | 3.3 | 5.8 | 6.5 | 0.86 | 3.8 | 2.3 | 3.3 | 2.2 | 0.95 | 1.8 | <dl | 2.0 | 8.2 | 9.0 | 5.1 | 4.8 |
Cs | 5.5 | 5.1 | 7.2 | 6.5 | 6.0 | <dl | 23 | 3.8 | 12 | 7.2 | 3.7 | 5.8 | 3.6 | 9.7 | 16 | 14 | 6.2 | 6.5 |
Ba | 24 | 21 | 106 | 60 | 63 | 12 | 57 | 46 | 31 | 35 | 26 | 25 | 15 | 32 | 38 | 35 | 46 | 24 |
La | 13 | 21 | 35 | 24 | 23 | 1.9 | 40 | 25 | 122 | 69 | 142 | 52 | 137 | 76 | 26 | 28 | 23 | 8.1 |
Ce | 32 | 37 | 65 | 55 | 50 | 3.6 | 75 | 54 | 364 | 266 | 590 | 132 | 409 | 163 | 42 | 58 | 44 | 21 |
Pr | 2.7 | 3.1 | 6.7 | 6.4 | 5.7 | <dl | 8.2 | 6.9 | 42 | 26 | 60 | 16 | 46 | 23 | 4.2 | 4.1 | 5.0 | 1.6 |
Nd | 11 | 9.9 | 24 | 25 | 24 | 1.7 | 28 | 27 | 177 | 111 | 264 | 65 | 199 | 98 | 13 | 12 | 19 | 6.7 |
Sm | 4.9 | 3.1 | 6.4 | 6.7 | 6.6 | <dl | 5.9 | 7.0 | 49 | 33.4 | 79 | 20 | 65 | 25 | 3.5 | 3.3 | 4.5 | 2.8 |
Eu | <dl | <dl | 0.86 | 0.98 | 1.0 | <dl | 0.78 | 0.93 | 6.5 | 4.3 | 11 | 2.6 | 8.3 | 3.3 | 0.45 | 0.47 | 0.68 | <dl |
Gd | 4.2 | 3.4 | 5.7 | 5.7 | 5.9 | <dl | 3.7 | 5.3 | 36 | 20 | 51 | 12 | 40 | 16 | 3.9 | 3.9 | 3.7 | 3.3 |
Tb | 0.82 | <dl | 1.1 | 0.98 | 0.99 | <dl | <dl | 0.73 | 4.9 | 2.9 | 6.8 | 1.6 | 5.4 | 2.1 | 0.89 | 0.84 | 0.75 | 0.69 |
Dy | 6.1 | 6.2 | 7.9 | 6.8 | 7.4 | <dl | 3.4 | 4.5 | 28 | 15 | 38 | 9.4 | 30 | 12 | 6.8 | 6.8 | 6.3 | 5.0 |
Ho | 1.4 | 1.5 | 1.9 | 1.7 | 1.7 | <dl | 0.70 | 0.92 | 5.5 | 2.7 | 6.7 | 1.6 | 5.2 | 2.3 | 1.7 | 1.6 | 1.7 | 1.1 |
Er | 3.5 | 3.6 | 4.9 | 4.3 | 4.4 | <dl | 1.6 | 2.1 | 12 | 5.7 | 14 | 3.5 | 11 | 4.8 | 4.4 | 4.2 | 4.8 | 2.8 |
Tm | 0.59 | 0.59 | 0.77 | 0.70 | 0.70 | <dl | <dl | <dl | 1.7 | 0.79 | 1.9 | 0.50 | 1.5 | 0.70 | 0.74 | 0.70 | 0.81 | 0.43 |
Yb | 4.4 | 4.1 | 5.3 | 4.8 | 4.6 | <dl | 1.6 | 2.1 | 12 | 5.5 | 13 | 3.5 | 9.7 | 4.6 | 5.4 | 5.2 | 6.2 | 3.0 |
Lu | <dl | <dl | 0.90 | 0.83 | 0.82 | <dl | <dl | <dl | 1.8 | 0.82 | 2.0 | <dl | 1.5 | <dl | 0.90 | 0.86 | 1.1 | <dl |
Hf | 20 | 17 | 3.8 | 4.5 | 4.0 | 0.50 | 5.8 | 1.6 | 4.5 | 2.9 | 0.65 | 2.1 | 0.91 | 2.8 | 11 | 15 | 3.7 | 12 |
Ta | 2.5 | 3.7 | <dl | <dl | <dl | <dl | 1.3 | <dl | <dl | <dl | <dl | <dl | <dl | <dl | 1.5 | 1.2 | <dl | 0.72 |
Tl | 1.6 | 0.95 | 1.2 | 1.2 | 1.2 | <dl | 3.7 | <dl | 1.8 | 1.0 | <dl | 1.0 | <dl | 1.7 | 0.95 | 0.90 | 2.3 | <dl |
Pb | 14 | 14 | 62 | 66 | 63 | 8.5 | 47 | 100 | 115 | 83 | 213 | 59 | 82 | 39 | 54 | 53 | 30 | 27 |
Th | 51 | 38 | 12 | 12 | 8.3 | <dl | 33 | 5.4 | 12 | 8.0 | 4.2 | 5.9 | 2.6 | 10 | 34 | 48 | 7.9 | 31 |
U | 22 | 13 | 82 | 93 | 118 | 2.4 | 5.8 | 31 | 80 | 54 | 110 | 30 | 81 | 48 | 14 | 15 | 63 | 7.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Li, B.; Zhuang, X.; Querol, X.; Moreno, N.; Shangguan, Y.; Zhou, J.; Liao, J. Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian’an Coalfield, Guangxi Province. Minerals 2021, 11, 301. https://doi.org/10.3390/min11030301
Zhang F, Li B, Zhuang X, Querol X, Moreno N, Shangguan Y, Zhou J, Liao J. Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian’an Coalfield, Guangxi Province. Minerals. 2021; 11(3):301. https://doi.org/10.3390/min11030301
Chicago/Turabian StyleZhang, Fuqiang, Baoqing Li, Xinguo Zhuang, Xavier Querol, Natalia Moreno, Yunfei Shangguan, Jinming Zhou, and Jialong Liao. 2021. "Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian’an Coalfield, Guangxi Province" Minerals 11, no. 3: 301. https://doi.org/10.3390/min11030301
APA StyleZhang, F., Li, B., Zhuang, X., Querol, X., Moreno, N., Shangguan, Y., Zhou, J., & Liao, J. (2021). Geological Controls on Enrichment of Rare Earth Elements and Yttrium (REY) in Late Permian Coals and Non-Coal Rocks in the Xian’an Coalfield, Guangxi Province. Minerals, 11(3), 301. https://doi.org/10.3390/min11030301