A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada
Abstract
:1. Introduction
2. Geological Setting
2.1. Flemish Pass Basin Geological Overview
2.2. Central Ridge Geological Overview
3. Sample Collection and Methods
3.1. MLA-SEM Analysis
3.2. Detrital Zircon Geochronology
3.3. Whole Rock Geochemistry
4. Results
4.1. Whole Rock Geochemistry
4.2. Heavy Mineral Data
4.3. Detrital Zircon U-Pb Geochronology
4.3.1. Upper Kimmeridgian Source Rock
4.3.2. Upper and Lower Tempest Sandstone
4.3.3. Rankin Formation
5. Discussion
5.1. Detrital Zircon U-Pb Age Groups
5.2. Paleodrainage Model–Upper and Lower Kimmeridgian Source Rock
5.3. Paleodrainage Model–Upper and Lower Tempest Sandstones
5.4. Paleodrainage Model–Rankin Formation
5.5. Regional Comparison
5.6. Constraints on Depositional Ages
5.7. Significance of Heavy Mineral Assemblages
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Lowe, D.G.; Sylvester, P.J.; Enachescu, M.E. Provenance and Paleodrainage Patterns of Upper Jurassic and Lower Cretaceous Synrift Sandstones in the Flemish Pass Basin, Offshore Newfoundland, East Coast of Canada. Bull. Am. Assoc. Pet. Geol. 2011, 95, 1295–1320. [Google Scholar] [CrossRef]
- Cody, J.; Hunter, D.; Schwartz, S.; Marshall, J.; Haynes, S.; Gruschwitz, K.; McDonough, M. A Late Jurassic play fairway beyond the Jeanne d’Arc Basin: New insights for a petroleum system in the Northern Flemish Pass Basin. In New Understanding of the Petroleum Systems of Continental Margins of the World: 32nd Annual, Canada, 19–22, Augest, 2018; Rosen, N.C., Weimer, P., Coutes dos Anjos, S.M., Henrickson, S., Marques, E., Mayall, M., Fillon, R., D’Agostino, T., Saller, A., Campion, K., et al., Eds.; Society of Economic Paleontologists and Mineralogists: Tulsa, OK, USA, 2012; ISBN 978-0-9836097-8-0. [Google Scholar]
- Fowler, M.G.; Obermajer, M.; Achal, S.; Milovic, M. Results of Geochemical Analyses of an Oil Sample from Mizzen L-11 Well, Flemish Pass, Offshore Eastern Canada; Geological Survey of Canada Paper: Ottawa, ON, Canada, 2007. [Google Scholar]
- Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB). Schedule of Wells–Newfoundland and Labrador Offshore Area. Lancaster G-70, Panther P-52, South Tempest G-88, North Dana I-43. 2007. Available online: https://www.cnlopb.ca/wells/ (accessed on 12 January 2021).
- Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB). Schedule of Wells–Newfoundland and Labrador Offshore Area. Baccalieu I-78. 2011. Available online: https://www.cnlopb.ca/wells/ (accessed on 12 January 2021).
- McCracken, J.N.; Haager, A.; Saunders, K.I.; Veilleux, B.W. Late Jurassic source rocks in the northern Flemish Pass Basin, Grand Banks of Newfoundland. In Proceedings of the GeoCanada 2000, Calgary, AB, Canada, 29 May–2 June 2000; Volume 25. [Google Scholar]
- Creaney, S.; Allison, B.H. An organic geochemical model of oil generation in the Avalon/Flemish Pass Sub-basins, East Coast Canada. Bull. Can. Pet. Geol. 1987, 35, 12–23. [Google Scholar]
- Sinclair, I.K. Evolution of Mesozoic-Cenozoic sedimentary basins in the Grand Banks area of Newfoundland and comparison with Flavy’s (1974) rift model. Bull. Can. Pet. Geol. 1988, 34, 255–273. [Google Scholar]
- McAlpine, K.D. Mesozoic Stratigraphy, Sedimentary Evolution, and Petroleum Potential of the Jeanne d’Arc Basin, Grand Banks of Newfoundland; Geological Survey of Canada Paper: Ottawa, ON, Canada, 1990; ISBN 978-0-660-13725-4. [Google Scholar]
- DeSilva, N. Submarine fans on the northeastern Grand Banks, offshore Newfoundland. In Proceedings of the GCSSEPM Foundation 15th Annual Research Conference–Submarine Fans and Turbidite Systems, Houston, TX, USA, 4–7 December 1994; pp. 95–104. [Google Scholar]
- Enachescu, M.E. Tectonic and structural framework of the northeast Newfoundland continental margin. In Sedimentary Basins and Basin Forming Mechanisms; Beaumont, C., Tankard, A.J., Eds.; Canadian Society of Petroleum Geologists: Calgary, AB, Canada, 1987; pp. 117–146. [Google Scholar]
- Sharp, I.R.; Higgins, H.; Scott, M.; Freitag, U.; Allsop, C.; Kane, K.; Sultan, A.; Doubleday, P.; Leppard, C.; Bloomfield, J.; et al. Rift to drift evolution and hyper- extension in the North Atlantic–insights from a super-regional approach. In Extended Abstracts: 6th Conjugate Margins Conference, Halifax, NS, Canada, 19–22 August 2018; Dalhousie University: Halifax, NS, Canada, 2019; ISBN 0-9810595-8. [Google Scholar]
- Enachescu, M.E. Extended basement beneath the intracratonic rifted basins of the Grand Banks of Newfoundland. Can. J. Explor. Geophys. 1988, 24, 48–65. [Google Scholar]
- Tankard, A.J.; Welsink, H.J. Extensional tectonics and stratigraphy of Hibernia oil field, Grand Banks, Newfoundland. Bull. Am. Assoc. Pet. Geol 1987, 71, 1210–1232. [Google Scholar]
- Foster, D.G.; Robinson, A.G. Geological history of the Flemish Pass Basin, offshore Newfoundland. Bull. Am. Assoc. Pet. Geol 1993, 77, 588–609. [Google Scholar]
- Desilva, N. Flemish Pass Basin: Hydrocarbon prospectivity and potential deep-water development. J. Can. Pet. Technol. 2000, 39, 22–25. [Google Scholar] [CrossRef]
- Enachescu, M.E.; Hogg, J.R. Exploring for Atlantic Canada’s next giant petroleum discovery. CSEG Rec. 2005, 30, 19–30. [Google Scholar]
- Enachescu, M.E. Call for Bids NL06-1, Parcels 1, 2 and 3, Regional Setting and Petroleum Geology Evaluation; Government of Newfoundland Department of Natural Resources: St. John’s, NL, Canada, 2006.
- Canada-Newfoundland and Labrador Offshore Petroleum Board (C-NLOPB). Petroleum Reserves and Resources Newfoundland Offshore Area 2020. Available online: https://www.cnlopb.ca/resource/information/ (accessed on 18 November 2020).
- McDonough, M.; Richardsen, G.; Haynes, S.; Minielly, G.; Gruschwitz, K.; Thorpe, G.; Anfort, S. Paradigm Shift in East Coast Canada: The Lightening of Flemish Pass Oil. In NGF Abstracts and Proceedings of the Geological Society of Norway, Tromso, Norway, 2–6 June 2014; Norsk Geologisk Forening: Trondheim, Norway, 2014. [Google Scholar]
- Enachescu, M.E. Petroleum Exploration Opportunities in the Flemish Pass Basin, Newfoundland and Labrador Offshore Area; Call for Bids NL13-01, Area “C”–Flemish Pass Basin, Parcel 1; Government of Newfoundland Department of Natural Resources: St. John’s, NL, Canada, 2014.
- Nelson, T.A. Density Separation of Clay Minerals. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 1971. [Google Scholar]
- Schieber, J.; Zimmerle, W. Petrography of shales: A survey of technics. In Shales and Mudstones. Petrography, Petrophysics, Geochemistry and Economic Geology; Schieber, J., Zimmerle, W., Sethi, P., Eds.; Schweizerbart: Stuttgart, Germany, 1998; Volume 2, pp. 3–12. [Google Scholar]
- Sylvester, P.J. Use of the Mineral Liberation Analyzer (MLA) for Mineralogical Studies of Sediments and Sedimentary Rocks; Mineralogical Association of Canada Short Course 42; Memorial University: St. John’s, NL, Canada, 2012; pp. 1–16. [Google Scholar]
- Morad, S. SEM study of authigenic rutile, anatase and brookite in Proterozoic sandstones from Sweden. Sediment. Geol. 1986, 46, 77–89. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Karim, A.; Piper, D.J.W. Authigenesis of Titania Minerals and the Mobility of Ti: New Evidence from Pro-Deltaic Sandstones, Cretaceous Scotian Basin, Canada. J. Sediment. Res. 2011, 81, 762–773. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Weir-Murphy, S. Early Diagenesis of Inner-Shelf Phosphorite and Iron-Silicate Minerals, Lower Cretaceous of the Orpheus Graben, Southeastern Canada: Implications for the Origin of Chlorite Rims. Bull. Am. Assoc. Pet. Geol. 2008, 92, 1153–1168. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometer data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Petrus, J.A.; Kamber, B.S. VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. Geostand. Geoanal. Res. 2012, 36, 247–270. [Google Scholar] [CrossRef]
- Andersen, T. Correction of Common Lead in U–Pb Analyses That Do Not Report 204Pb. Chem. Geol. 2002, 192, 59–79. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.; Spiegel, W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Jaffey, A.H.; Flynn, K.F.; Glendenin, L.E.; Bentley, W.C.; Essling, A.M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 1971, 4, 1889–1906. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center Special Publication; Berkeley Geochronological Center: Berkeley, CA, USA, 2012; Available online: http://www.bgc.org/isoplot_etc/isoplot/Isoplot3_75-4_15manual.pdf (accessed on 18 November 2020).
- Ketchum, J.W.; Jackson, S.E.; Culshaw, N.G.; Barr, S.M. Depositional and tectonic setting of the Paleoproterozoic Lower Aillik Group, Makkovik Province, Canada: Evolution of a passive margin-foredeep sequence based on petrochemistry and U–Pb (TIMS and LAM-ICP-MS) geochronology. Precambrian Res. 2001, 105, 331–356. [Google Scholar] [CrossRef]
- Sláma, J.; Košler, J.; Condon, D.J.; Crowley, J.L.; Gerdes, A.; Hanchar, J.M.; Horstwood, M.S.; Morris, G.A.; Nasdala, L.; Norberg, N.; et al. Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 2008, 249, 1–35. [Google Scholar] [CrossRef]
- Stern, R.A.; Bodorkos, S.; Kamo, S.L.; Hickman, A.H.; Corfu, F. Measurement of SIMS instrumental mass fractionation of Pb isotopes during zircon dating. Geostand. Geoanal. Res. 2009, 33, 145–168. [Google Scholar] [CrossRef]
- Fedo, C.M.; Sircombe, K.N.; Rainbird, R.H. Detrital Zircon Analysis of the Sedimentary Record. In Zircon: Experiments, Isotopes, and Trace Element Investigations; Hanchar, J.M., Hoskin, P., Eds.; Mineralogical Society of America: Chantilly, VA, USA, 2003; Volume 53, pp. 277–303. [Google Scholar]
- Dodson, M.H.; Compston, W.; Williams, I.S.; Wilson, J.F. A search for ancient detrital zircons in Zimbabwean sediments. J. Geol. Soc. Lond. 1988, 145, 977–983. [Google Scholar] [CrossRef]
- Vermeesch, P. How Many Grains Are Needed for a Provenance Study? Earth Planet. Sci. Lett. 2004, 224, 441–451. [Google Scholar] [CrossRef]
- Jenner, G.A.; Longerich, H.P.; Jackson, S.E.; Fryer, B.J. ICP-MS–a powerful tool for high precision trace element analyses in earth sciences: Evidence from analyses of selected U.S.G.S. reference samples. Chem. Geol. 1990, 83, 105–118. [Google Scholar] [CrossRef]
- McLennan, S.M.; Bock, B.; Hemming, S.R.; Hurowitz, J.A.; Lev, S.M.; McDaniel, D.K. The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In Geochemistry of Sediments and Sedimentary Rocks: Evolutionary Considerations to Mineral Deposit-Forming Environments; Lentz, D.R., Ed.; GeoText 4; Geological Association of Canada: St. John’s, NL, Canada, 2003; pp. 7–38. [Google Scholar]
- McLennan, S.M.; Taylor, S.R.; McCulloch, M.T.; Maynard, J.B. Geochemical and Nd-Sr Isotopic Composition of Deep-Sea Turbidites: Crustal Evolution and Plate Tectonic Associations. Geochim. Cosmochim. Acta 1990, 54, 2015–2050. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–30. [Google Scholar] [CrossRef]
- Hallsworth, C.R.; Morton, A.C.; Claoue-Long, J.; Fanning, C.M. Carboniferous sand provenance in the Pennine Basin, UK; constraints from heavy mineral and detrital zircon age data. Sediment. Geol. 2000, 137, 147–185. [Google Scholar] [CrossRef]
- Morton, A.C.; Knox, R.W.O.B.; Hallsworth, C.R. Correlation of reservoir sandstones using quantitative heavy mineral analysis. Pet. Geosci. 2002, 8, 251–262. [Google Scholar] [CrossRef] [Green Version]
- Morton, A.C.; Whitham, A.G.; Fanning, C.M. Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea; integration of heavy mineral, mineral chemical and zircon age data. Sediment. Geol. 2005, 182, 3–28. [Google Scholar] [CrossRef]
- Totten, M.W.; Hanan, M.A. Heavy minerals in shales. In Heavy Minerals in Use, Developments in Sedimentology; Mange, M., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 323–341. ISBN 978-0-444-51753-1. [Google Scholar]
- Macquaker, J.H.S.; Adams, A.E. Maximizing information from fine-grained sedimentary rocks: An inclusive nomenclature for mudstones. J. Sediment. Res. 2003, 73, 735–744. [Google Scholar] [CrossRef]
- Rubey, W.W. The size distribution of heavy minerals within a water-laid sandstone. J. Sediment. Petrol. 1933, 3, 3–29. [Google Scholar]
- Hubert, J.F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Petrol. 1962, 32, 440–450. [Google Scholar]
- Morton, A.C. Depth control of intrastratal solution of heavy minerals from the Palaeocene of the North Sea. J. Sediment. Petrol. 1979, 49, 281–286. [Google Scholar]
- Smale, D.; Morton, A.C. Heavy mineral suites of core samples from the McKee Formation (Eocene-lower Oligocene), Taranaki; implications for provenance and diagenesis. N. Z. J. Geol. Geophys. 1987, 30, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Milliken, K.L. Loss of provenance information through subsurface diagenesis in Plio-Pleistocene sandstones, northern Gulf of Mexico. J. Sediment. Petrol. 1988, 58, 992–1002. [Google Scholar]
- Robertson Research International Ltd. Stratigraphic Correlation of Baccalieu I-78, Gabriel C-60, Lancaster G-70, and South Tempest G-88 Wells. Robertson Research International Limited Report Number 6268. 2002. Available online: https://basin.gdr.nrcan.gc.ca/wells/index_e.php (accessed on 18 November 2020).
- Jenkins, W.A.M. Palynology of the Lancaster F-70 (G-70) Well. Flemish Pass, Offshore Newfoundland. Associated Biostratigraphic Consultants, Calgary. December 1986. Available online: https://basin.gdr.nrcan.gc.ca/wells/index_e.php (accessed on 18 November 2020).
- BP Exploration Canada Ltd. Biostratigraphic Study of Flemish Pass Wells. 1991. Available online: https://basin.gdr.nrcan.gc.ca/wells/index_e.php (accessed on 18 November 2020).
- Pollock, J.C.; Hibbard, J.P.; Sylvester, P.J. Early Ordovician Rifting of Avalonia and Birth of the Rheic Ocean: U–Pb Detrital Zircon Constraints from Newfoundland. J. Geol. Soc. 2009, 166, 501–515. [Google Scholar] [CrossRef]
- Willner, A.P.; Gerdes, A.; Massonne, H.-J.; van Staal, C.R.; Zagorevski, A. Crustal Evolution of the Northeast Laurentian Margin and the Peri-Gondwanan Microcontinent Ganderia Prior to and During Closure of the Iapetus Ocean: Detrital Zircon U–Pb and Hf Isotope Evidence from Newfoundland. Geosci. Can. 2014, 41, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Kerr, A.; Jenner, G.A.; Fryer, B.J. Sm–Nd Isotopic Geochemistry of Precambrian to Paleozoic Granitoid Suites and the Deep-Crustal Structure of the Southeast Margin of the Newfoundland Appalachians. Can. J. Earth Sci. 1995, 32, 224–245. [Google Scholar] [CrossRef]
- Murphy, J.B.; Keppie, J.D.; Dostal, J.; Cousins, B.L. Repeated late Neoproterozoic-Silurian lower crustal melting beneath the Antigonish Highlands, Nova Scotia: Nd isotopic evidence and tectonic interpretations. In Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic; Nance, R.D., Thompson, M.D., Eds.; Special Papers; Geological Society of America: Boulder, CO, USA, 1996; Volume 304, pp. 109–120. [Google Scholar]
- Bevier, M.L.; Barr, S.M. U-Pb age constraints on the stratigraphy and tectonic history of the Avalon terrane, New Brunswick, Canada. J. Geol. 1990, 58, 53–63. [Google Scholar] [CrossRef]
- Zartman, O.; Hermes, D. Archean inheritance in zircon from late Paleozoic granites from the Avalon zone of southeastern New England: An African connection. Earth Planet. Sci. Lett. 1987, 82, 305–315. [Google Scholar] [CrossRef]
- King, L.H.; Fader, G.B.J.; Jenkins, W.A.M.; King, E.L. Occurrence and Regional Geological Setting of Paleozoic Rocks on the Grand Banks of Newfoundland. Can. J. Earth Sci. 1986, 23, 504–526. [Google Scholar] [CrossRef]
- Bell, J.S.; Howie, R.D. Paleozoic Geology. In Geology of the Continental Margin of Eastern Canada; Keen, M.J., Williams, G.L., Eds.; Geological Survey of Canada: Ottawa, ON, Canada, 1990; pp. 141–165. [Google Scholar]
- Sylvester, P.J. Mineralogy and provenance of Carboniferous sandstone and shale units in the Deer Lake and Bay St. George Basins, western Newfoundland. Government of Newfoundland and Labrador, PEEP (Petroleum Exploration Enhancement Project) Workshop Presentation 2012. Available online: https://www.gov.nl.ca/iet/energy/petroleum/onshore/peep/ (accessed on 2 April 2014).
- Nauton-Fourteu, M.; Tyrrell, S.; Morton, A.; Mark, C.; O’Sullivan, G.J.; Chew, D.M. Constraining Recycled Detritus in Quartz-Rich Sandstones: Insights from a Multi-Proxy Provenance Study of the Mid-Carboniferous, Clare Basin, Western Ireland. Basin Res. 2021, 33, 342–363. [Google Scholar] [CrossRef]
- King, L.H.; Fader, G.B.; Poole, W.H.; Wanless, R.K. Geological Setting and Age of the Flemish Cap Granodiorite, East of the Grand Banks of Newfoundland. Can. J. Earth Sci. 1985, 22, 1286–1298. [Google Scholar] [CrossRef]
- Kerr, A.; Dunning, G.R.; Tucker, R.D. The Youngest Paleozoic Plutonism of the Newfoundland Appalachians: U–Pb Ages from the St. Lawrence and François Granites. Can. J. Earth Sci. 1993, 30, 2328–2333. [Google Scholar] [CrossRef]
- Priem, H.N.A.; Den Tex, E. Tracing crustal evolution in the NW Iberian Peninsula through the Rb-Sr and U-Pb systematics of Paleozoic granitoids: A review. Phys. Earth Planet. Inter. 1984, 35, 121–130. [Google Scholar] [CrossRef]
- Hiscott, R.N.; Marsaglia, K.M.; Wilson, R.C.L.; Robertson, A.H.F.; Karner, G.D.; Tucholke, B.E.; Pletsch, T.; Petschick, R. Detrital Sources and Sediment Delivery to the Early Post-Rift (Albian-Cenomanian) Newfoundland Basin East of the Grand Banks: Results from ODP Leg 210. Bull. Can. Pet. Geol. 2007, 56, 69–92. [Google Scholar] [CrossRef]
- Dickinson, W.R.; Gehrels, G.E. Use of U–Pb Ages of Detrital Zircons to Infer Maximum Depositional Ages of Strata: A Test against a Colorado Plateau Mesozoic Database. Earth Planet. Sci. Lett. 2009, 288, 115–125. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.C.; Gibbard, P.L.; Fan, J.-X. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Robertson Research International Ltd. Palynology (2650–4205 m) and Micropaleontology (2635–4210 m), Panther P-52 Biostratigraphy Report. 2004. Available online: https://basin.gdr.nrcan.gc.ca/wells/index_e.php (accessed on 18 November 2020).
- Bujak Davies Group. Palynological biostratigraphy of the interval 395–4203 m, Panther P-52, Grand Banks. Geological Survey of Canada Open File Report 1876. 1987. Available online: https://basin.gdr.nrcan.gc.ca/wells/index_e.php (accessed on 18 November 2020).
- Morton, A.C.; Hallsworth, C.R. Stability of Detrital Heavy Minerals During Burial Diagenesis. In Heavy Minerals in Use, Developments in Sedimentology; Mange, M., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 215–245. ISBN 978-0-444-51753-1. [Google Scholar]
- Meinhold, G. Rutile and Its Applications in Earth Sciences. Earth Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scott, M.; Sylvester, P.J.; Wilton, D.H.C. A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada. Minerals 2021, 11, 265. https://doi.org/10.3390/min11030265
Scott M, Sylvester PJ, Wilton DHC. A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada. Minerals. 2021; 11(3):265. https://doi.org/10.3390/min11030265
Chicago/Turabian StyleScott, Matthew, Paul J. Sylvester, and Derek H. C. Wilton. 2021. "A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada" Minerals 11, no. 3: 265. https://doi.org/10.3390/min11030265
APA StyleScott, M., Sylvester, P. J., & Wilton, D. H. C. (2021). A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada. Minerals, 11(3), 265. https://doi.org/10.3390/min11030265