A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2
Abstract
1. Introduction
1.1. Motivation and Direction of the Review
1.2. Geochemistry of Alkaline Lakes
2. Data-Driven Hypotheses for Interpreting Paleolake Chemistry
2.1. Hypothesis 1
2.2. Hypothesis 2
3. Data-Driven Hypotheses for Interpreting the Impact of Diatoms on Alkaline Lake Sedimentation
3.1. Hypothesis 3
3.2. Hypothesis 4
4. Data-Driven Hypotheses for Interpreting Depositional Mineralogy Based on Water Chemistry (and Vice Versa)
4.1. Hypothesis 5
4.2. Hypothesis 6
5. Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Geochemical Modeling
Appendix B. Mg-Silicate Gel Crystallization Experiments
Sample | Elapsed Time (days) | Mg (mmol/L) | Na (mmol/L) |
---|---|---|---|
80 mg gel, 2.2 mL DI H2O | |||
1L-1 | 30 | 13 | 4.9 |
1L-2 | 61 | 13 | 3.9 |
1L-3 | 104 | 14 | 3.8 |
1L-4 | 295 | 18 | 6.1 |
1L-5 | 356 | 19 | 6.4 |
160 mg gel, 2.2 mL DI H2O | |||
2L-1 | 30 | 17 | - |
2L-2 | 61 | 21 | 15 |
2L-3 | 104 | 20 | 16 |
2L-4 | 295 | 31 | 23 |
2L-5 | 356 | 34 | 24 |
Appendix C. Precipitation Experiments Methodology
Appendix D. Collection, Compilation, and Formatting of the Alkaline Lake Database
References
- Eugster, H.P. Geochemistry of evaporitic lacustrine deposits. Annu. Rev. Earth Planet. Sci. 1980, 8, 35–63. [Google Scholar] [CrossRef]
- Karpeta, W.P. Bedded cherts in the Rietgat Formation, Hartbeesfontein, South Africa: A late Archaean to early Proterozoic magadiitic alkaline playa lake deposit? S. Afr. J. Geol. 1989, 92, 29–36. [Google Scholar]
- Jones, B.E.; Grant, W.D.; Duckworth, A.W.; Owenson, G.G. Microbial diversity of soda lakes. Extremophiles 1998, 2, 191–200. [Google Scholar] [CrossRef]
- Stüeken, E.E.; Martinez, A.; Love, G.; Olsen, P.E.; Bates, S.; Lyons, T.W. Effects of pH on redox proxies in a Jurassic rift lake: Implications for interpreting environmental records in deep time. Geochim. Cosmochim. Acta 2019, 252, 240–267. [Google Scholar] [CrossRef]
- Stüeken, E.E.; Tino, C.; Arp, G.; Jung, D.; Lyons, T.W. Nitrogen isotope ratios trace high-pH conditions in a terrestrial Mars analog site. Sci. Adv. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Toner, J.D.; Catling, D.C. A carbonate-rich lake solution to the phosphate problem of the origin of life. Proc. Natl. Acad. Sci. USA 2019. [Google Scholar] [CrossRef]
- Melack, J.M.; Kilham, P. Photosynthetic rates of phytoplankton in East African alkaline, saline lakes. Limnol. Oceanogr. 1974, 19, 743–755. [Google Scholar] [CrossRef]
- Zorz, J.K.; Sharp, C.; Kleiner, M.; Gordon, P.M.K.; Pon, R.T.; Dong, X.; Strous, M. A shared core microbiome in soda lakes separated by large distances. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Talling, J.F.; Wood, R.B.; Prosser, M.V.; Baxter, R.M. The upper limit of photosynthetic productivity by phytoplankton: Evidence from Ethiopian soda lakes. Freshw. Biol. 1973, 3, 53–76. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 171–184. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Finlay, K.; Vogt, R.J.; Bogard, M.J.; Wissel, B.; Tutolo, B.M.; Simpson, G.L.; Leavitt, P.R. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming. Nature 2015, 519, 215–218. [Google Scholar] [CrossRef]
- Canon-Rubio, K.A.; Sharp, C.E.; Bergerson, J.; Strous, M.; la Hoz Siegler, H. Use of highly alkaline conditions to improve cost-effectiveness of algal biotechnology. Appl. Microbiol. Biotechnol. 2016, 100, 1611–1622. [Google Scholar] [CrossRef] [PubMed]
- Wright, V.P.; Barnett, A.J. An abiotic model for the development of textures in some South Atlantic early Cretaceous lacustrine carbonates. Geol. Soc. Spec. Publ. 2015, 418, 209–219. [Google Scholar] [CrossRef]
- Tosca, N.J.; Wright, V.P. Diagenetic pathways linked to labile Mg-clays in lacustrine carbonate reservoirs: A model for the origin of secondary porosity in the Cretaceous pre-salt Barra Velha Formation, offshore Brazil. Geol. Soc. Spec. Publ. 2018, 435, 33–46. [Google Scholar] [CrossRef]
- Pietzsch, R.; Tedeschi, L.R.; Oliveira, D.M.; dos Anjos, C.W.D.; Vazquez, J.C.; Figueiredo, M.F. Environmental conditions of deposition of the Lower Cretaceous lacustrine carbonates of the Barra Velha Formation, Santos Basin (Brazil), based on stable carbon and oxygen isotopes: A continental record of pCO2 during the onset of the Oceanic Anoxic Event. Chem. Geol. 2020, 535, 119457. [Google Scholar] [CrossRef]
- Gomes, J.P.; Bunevich, R.B.; Tedeschi, L.R.; Tucker, M.E.; Whitaker, F.F. Facies classification and patterns of lacustrine carbonate deposition of the Barra Velha Formation, Santos Basin, Brazilian Pre-salt. Mar. Pet. Geol. 2020, 113, 104176. [Google Scholar] [CrossRef]
- Olivito, J.P.R.; Souza, F.J. Depositional model of early Cretaceous lacustrine carbonate reservoirs of the Coqueiros formation—Northern Campos Basin, southeastern Brazil. Mar. Pet. Geol. 2020, 111, 414–439. [Google Scholar] [CrossRef]
- Carminatti, M.; Wolff, B.; Gamboa, L. New exploratory frontiers in Brazil. In Proceedings of the 19th World Petroleum Congress, Madrid, Spain, 29 June–3 July 2008. [Google Scholar]
- Herlinger, R.; Zambonato, E.E.; De Ros, L.F. Influence of Diagenesis On the Quality of Lower Cretaceous Pre-salt Lacustrine Carbonate Reservoirs from Northern Campos Basin, Offshore Brazil. J. Sediment. Res. 2017, 87, 1285–1313. [Google Scholar] [CrossRef]
- Pozo, M.; Galán, E. Magnesian clay deposits: Mineralogy and origin. In Magnesian Clays: Characterization, Origin and Applications; Digilabs: Bari, Italy, 2015; pp. 175–228. [Google Scholar]
- Jones, B.F.; Galan, E.H. Sepiolite and palygorskite. Rev. Mineral. 1988, 19, 631–674. [Google Scholar]
- Tosca, N.J. Geochemical pathways to Mg-clay formation. Magnes. Clays Charact. Orig. Appl. 2015, 2, 283–329. [Google Scholar]
- Eugster, H.P.; Hardie, L.A. Saline Lakes. In Lakes; Springer: New York, NY, USA, 1978; pp. 237–293. [Google Scholar]
- Hardie, L.A.; Eugster, H.P. Evolution of closed-basin brines. Miner. Soc. Amer. Spec. Pap. 1970, 290, 273–290. [Google Scholar]
- García-Ruiz, J.M. Carbonate precipitation into alkaline silica-rich environments. Geology 1998, 26, 843–846. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Darragi, F.; Tardy, Y. Authigenic trioctahedral smectites controlling pH, alkalinity, silica and magnesium concentrations in alkaline lakes. Chem. Geol. 1987, 63, 59–72. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.A.; Harrison, A.L.; Dipple, G.M.; Mccutcheon, J.; Southam, G.; Kenward, P.A. A depositional model for hydromagnesite-magnesite playas near Atlin, British Columbia, Canada. Sedimentology 2014, 61, 1701–1733. [Google Scholar] [CrossRef]
- Garrels, R.M.; Mackenzie, F.T. Origins of the chemical composition of some springs and lakes. In Equilibrium Concepts in Natural Water Systems; American Chemical Society: Washington, DC, USA, 1967; pp. 222–242. [Google Scholar]
- Edmonds, M.; Tutolo, B.; Iacovino, K.; Moussallam, Y. Magmatic carbon outgassing and uptake of CO2 by alkaline waters. Am. Mineral. 2020, 105, 28–34. [Google Scholar] [CrossRef]
- Deocampo, D.M.; Berry, P.A.; Beverly, E.J.; Ashley, G.M.; Jarrett, R.E. Whole-rock geochemistry tracks precessional control of Pleistocene lake salinity at Olduvai Gorge, Tanzania: A record of authigenic clays. Geology 2017, 45, 683–686. [Google Scholar] [CrossRef]
- Banfield, J.F.; Jones, B.F.; Veblen, D.R. An AEM-TEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage. Geochim. Cosmochim. Acta 1991, 55, 2795–2810. [Google Scholar] [CrossRef]
- Eberl, D.D.; Jones, B.F.; Khoury, H.N. Mixed-layer kerolite/stevensite from the Amargosa Desert, Nevada. Clays Clay Miner. 1982, 30, 321–326. [Google Scholar] [CrossRef]
- Arizaleta, M.L.; Nightingale, M.; Tutolo, B.M. A rate law for sepiolite growth at ambient temperatures and its implications for early lacustrine diagenesis. Geochim. Cosmochim. Acta 2020, 288, 301–315. [Google Scholar] [CrossRef]
- Mulders, J.J.P.A.; Oelkers, E.H. An experimental study of sepiolite dissolution rates and mechanisms at 25 °C. Geochim. Cosmochim. Acta 2020, 270, 296–312. [Google Scholar] [CrossRef]
- Galán, E.; Pozo, M. Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings. In Developments in Clay Science; Elsevier Science: Amsterdam, The Netherlands, 2011; Volume 3, pp. 125–173. ISBN 9780444536075. [Google Scholar]
- Deocampo, D.M. Authigenic clay minerals in lacustrine mudstones. Spec. Pap. Geol. Soc. Am. 2015, 515, 49–64. [Google Scholar] [CrossRef]
- Pozo, M.; Casas, J. Origin of kerolite and associated Mg clays in palustrine-lacustrine environments. The Esquivias deposit (Neogene Madrid Basin, Spain). Clay Miner. 1999, 34, 395–418. [Google Scholar] [CrossRef]
- Fahey, J.J.; Ross, M.; Axelrod, J.M. Loughlinite: A new hydrous sodium magnesium silicate. Am. Mineral. 1960, 45, 270–281. [Google Scholar]
- Jones, B.F. Clay mineral diagenesis in lacustrine sediments. US Geol. Surv. Bull. 1986, 1578, 291–300. [Google Scholar]
- Wollast, R.; Mackenzie, F.T.; Bricker, O.P. Experimental Precipitation and Genesis of Sepiolite at Earth—Surface Conditions. Am. Mineral. 1968, 53, 1645–1662. [Google Scholar]
- Tosca, N.J.; Macdonald, F.A.; Strauss, J.V.; Johnston, D.T.; Knoll, A.H. Sedimentary talc in Neoproterozoic carbonate successions. Earth Planet. Sci. Lett. 2011, 306, 11–22. [Google Scholar] [CrossRef]
- Tosca, N.J.; Masterson, A.L. Chemical controls on incipient Mg-silicate crystallization at 25 °C: Implications for early and late diagenesis. Clay Miner. 2014, 49, 165–194. [Google Scholar] [CrossRef]
- Tutolo, B.M.; Tosca, N.J. Experimental examination of the Mg-silicate-carbonate system at ambient temperature: Implications for alkaline chemical sedimentation and lacustrine carbonate formation. Geochim. Cosmochim. Acta 2018, 225, 80–101. [Google Scholar] [CrossRef]
- Mercedes-Martín, R.; Rogerson, M.R.; Brasier, A.T.; Vonhof, H.B.; Prior, T.J.; Fellows, S.M.; Reijmer, J.J.G.; Billing, I.; Pedley, H.M. Growing spherulitic calcite grains in saline, hyperalkaline lakes: Experimental evaluation of the effects of Mg-clays and organic acids. Sediment. Geol. 2016, 335, 93–102. [Google Scholar] [CrossRef]
- Wright, V.P.; Barnett, A. Cyclicity and Carbonate-Silicate Gel Interactions in Cretaceous Alkaline Lakes. AAPG Annu. Conv. Ehibition 2014, 51011, 18. [Google Scholar]
- Baldermann, A.; Mavromatis, V.; Frick, P.M.; Dietzel, M. Effect of aqueous Si/Mg ratio and pH on the nucleation and growth of sepiolite at 25 °C. Geochim. Cosmochim. Acta 2018, 227, 211–226. [Google Scholar] [CrossRef]
- Tosca, N.J.; Knoll, A.H. Juvenile chemical sediments and the long term persistence of water at the surface of Mars. Earth Planet. Sci. Lett. 2009, 286, 379–386. [Google Scholar] [CrossRef]
- Bish, D.L. X-ray Diffraction Results from Mars. Science 2014, 1–6. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Komarneni, S.; Amonette, J.E. Synthesis of smectite clay minerals: A critical review. Clays Clay Miner. 1999, 47, 529–554. [Google Scholar] [CrossRef]
- Granquist, W.T.; Pollack, S.S. A study of the synthesis of hectorite. Clays Clay Miner. 1959, 8, 150–169. [Google Scholar] [CrossRef]
- Harder, H. The role of magnesium in the formation of smectite minerals. Chem. Geol. 1972, 10, 31–39. [Google Scholar] [CrossRef]
- Vogels, R.J.M.J.; Kerkhoffs, M.J.H.V.; Geus, J.W. Non-hydrothermal synthesis, characterisation and catalytic properties of saponite clays. In Studies in Surface Science and Catalysis; Elsevier BV: Amsterdam, Netherlands, 1995; Volume 91, pp. 1153–1161. [Google Scholar]
- Decarreau, A. Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water. Geochim. Cosmochim. Acta 1985, 49, 1537–1544. [Google Scholar] [CrossRef]
- Decarreau, A. Cristallogenèse expérimentale des smectites magnésiennes: Hectorite, stévensite. Bull. Minéralogie 1980, 103, 579–590. [Google Scholar] [CrossRef]
- Berner, R.A. Early Diagenesis: A Theoretical Approach; Princeton University Press: Princeton, NJ, USA, 1980. [Google Scholar]
- Wright, V.P. Lacustrine carbonates in rift settings: The interaction of volcanic and microbial processes on carbonate deposition. Geol. Soc. Spec. Publ. 2012, 370, 39–47. [Google Scholar] [CrossRef]
- Saller, A.; Rushton, S.; Buambua, L.; Inman, K.; McNeil, R.; Dickson, J.A.D.T. Presalt stratigraphy and depositional systems in the Kwanza Basin, offshore Angola. Am. Assoc. Pet. Geol. Bull. 2016, 100, 1135–1164. [Google Scholar] [CrossRef]
- Wright, V.P.; Barnett, A.J. The textural evolution and ghost matrices of the Cretaceous Barra Velha Formation carbonates from the Santos Basin, offshore Brazil. Facies 2020, 66, 1–18. [Google Scholar] [CrossRef]
- Deocampo, D.M.; Ashley, G.M. Siliceous islands in a carbonate sea: Modern and Pleistocene spring-fed wetlands in Ngorongoro crater and Oldupai Gorge, Tanzania. J. Sediment. Res. 1999, 69, 974–979. [Google Scholar] [CrossRef]
- Deocampo, D.M. Evaporative evolution of surface waters and the role of aqueous CO2 in magnesium silicate precipitation: Lake Eyasi and Ngorongoro crater, northern Tanzania. S. Afr. J. Geol. 2005, 108, 493–504. [Google Scholar] [CrossRef]
- Stoessell, R.K. 25 °C and 1 atm dissolution experiments of sepiolite and kerolite. Geochim. Cosmochim. Acta 1988, 52, 365–374. [Google Scholar] [CrossRef]
- Birsoy, R. Formation of sepiolite-palygorskite and related minerals from solution. Clays Clay Miner. 2002, 50, 736–745. [Google Scholar] [CrossRef]
- Hay, R.L.; Hughes, R.E.; Kyser, T.K.; Glass, H.D.; Liu, J. Magnesium-rich clays of the meerschaum mines in the Amboseli basin, Tanzania and Kenya. Clays Clay Miner. 1995, 43, 455–466. [Google Scholar] [CrossRef]
- Khoury, H.N.; Eberl, D.D.; Jones, B.F. Origin of magnesium clays from the Amargosa Desert, Nevada. Clays Clay Miner. 1982, 30, 327–336. [Google Scholar] [CrossRef]
- Badaut, D.; Risacher, F. Authigenic smectite on diatom frustules in Bolivian saline lakes. Geochim. Cosmochim. Acta 1983, 47, 363–375. [Google Scholar] [CrossRef]
- Servant-Vildary, S.; Roux, M. Multivariate analysis of diatoms and water chemistry in Bolivian saline lakes. Hydrobiologia 1990, 197, 267–290. [Google Scholar] [CrossRef]
- Ryves, D.; Juggins, S.; Fritz, S.; Battarbee, R. Experimental diatom dissolution and the quantification of microfossil preservation in sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2001, 172, 99–113. [Google Scholar] [CrossRef]
- Katz, M.E.; Finkel, Z.V.; Grzebyk, D.; Knoll, A.H.; Paul, G.; Falkowski, P.G. Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 523–556. [Google Scholar] [CrossRef]
- Maliva, R.G.; Knoll, A.H.; Siever, R. Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. Palaios 1989, 4, 519–532. [Google Scholar] [CrossRef]
- Alverson, A.J.; Jansen, R.K.; Theriot, E.C. Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Mol. Phylogenet. Evol. 2007, 45, 193–210. [Google Scholar] [CrossRef]
- Conley, D.J.; Frings, P.J.; Fontorbe, G.; Clymans, W.; Stadmark, J.; Hendry, K.R.; Marron, A.O.; De La Rocha, C.L. Biosilicification drives a decline of dissolved si in the oceans through geologic time. Front. Mar. Sci. 2017, 4. [Google Scholar] [CrossRef]
- Stenger-Kovács, C.; Lengyel, E.; Buczkó, K.; Tóth, F.M.; Crossetti, L.O.; Pellinger, A.; Doma, Z.Z.; Padisák, J. Vanishing world: Alkaline, saline lakes in Central Europe and their diatom assemblages. Inl. Waters 2014, 4, 383–396. [Google Scholar] [CrossRef]
- Power, I.M.; Wilson, S.A.; Thom, J.M.; Dipple, G.M.; Gabites, J.E.; Southam, G. The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chem. Geol. 2009, 260, 286–300. [Google Scholar] [CrossRef]
- Fritz, S.C.; Juggins, S.; Battarbee, R.W. Diatom assemblages and ionic characterization of lakes of the Northern Great Plains, North America: A tool for reconstructing past salinity and climate fluctuations. Can. J. Fish. Aquat. Sci. 1993, 50, 1844–1856. [Google Scholar] [CrossRef]
- Renberg, I.; Hellberg, T. The pH history of lakes in southwestern Sweden, as calculated from the subfossil diatom flora of the sediments. Ambio 1982, 11, 30–33. [Google Scholar] [CrossRef]
- Dixit, S.S.; Dickman, M.D. Correlation of surface sediment diatoms with the present lake water pH in 28 Algoma lakes, Ontario, Canada. Hydrobiologia 1986, 131, 133–143. [Google Scholar] [CrossRef]
- Sverjensky, D.A.; Shock, E.L.; Helgeson, H.C. Prediction of the thermodynamic properties of aqueous metal complexes to 1000 °C and 5 kb. Geochim. Cosmochim. Acta 1997, 61, 1359–1412. [Google Scholar] [CrossRef]
- Chen, C.Y.; Durbin, E.G. Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol. Prog. Ser. 1994, 109, 83–94. [Google Scholar] [CrossRef]
- Elzenga, J.T.M.; Prins, H.B.A.; Stefels, J. The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique. Limnol. Oceanogr. 2000, 45, 372–380. [Google Scholar] [CrossRef]
- Humphrey, G.F. The Photosynthesis: Respiration ratio of some unicellular marine algae. J. Exp. Mar. Bio. Ecol. 1975, 18, 111–119. [Google Scholar] [CrossRef]
- Hansen, P.J. Effect of high pH on the growth and survival of marine phytoplankton: Implications for species succession. Aquat. Microb. Ecoogy 2002, 28, 279–288. [Google Scholar] [CrossRef]
- Gell, P.A. The development of a diatom database for inferring lake salinity, Western Victoria, Australia: Towards a quantitative approach for reconstructing past climates. Aust. J. Bot. 1997, 45, 389–423. [Google Scholar] [CrossRef]
- Krebs, W.N.; Bradbury, J.P.; Theriot, E. Neogene and quaternary lacustrine diatom biochronology, western USA. Palaios 1987, 2, 505–513. [Google Scholar] [CrossRef]
- Sims, P.A.; Mann, D.G.; Medlin, L.K. Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia 2006, 45, 361–402. [Google Scholar] [CrossRef]
- Trembath-Reichert, E.; Wilson, J.P.; McGlynn, S.E.; Fischer, W.W. Four hundred million years of silica biomineralization in land plants. Proc. Natl. Acad. Sci. USA 2015, 112, 5449–5454. [Google Scholar] [CrossRef]
- Downs, R.T. The RRUFF Project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In Proceedings of the 19th General Meeting of the International Mineralogical Association, Kobe, Japan, 23–28 July 2006. [Google Scholar]
- Uher, P.; Janák, M.; Ozdín, D. Calcian dravite from metacarbonate rocks of the Mútnik magnesite-talc deposit, Hnúšt’a, Slovakia. Neues Jahrb. Fur. Mineral. Mon. 2002, 68–84. [Google Scholar] [CrossRef]
- Bradley, W.H.; Fahey, J.J. Occurrence of Stevensite in the Green River Formation of Wyoming. Am. Mineral. 1962, 47, 996–998. [Google Scholar]
- Bradley, W.H.; Eugster, H.P. Geochemistry and Paleolimnology of the Trona Deposits and Associated Authigenic Minerals of the Green River Formation of Wyoming; Professional Paper 496-B; U.S. Government Publishing Office: Washington, DC, USA, 1969; pp. 1–71. [Google Scholar]
- Risacher, F.; Fritz, B. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution. Geochim. Cosmochim. Acta 1991, 55, 687–705. [Google Scholar] [CrossRef]
- Reimer, A.; Landmann, G.; Kempe, S. Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat. Geochem. 2009, 15, 195–222. [Google Scholar] [CrossRef]
- Fussmann, D.; Jean Elisabeth Von Hoyningen-Huene, A.; Reimer, A.; Schneider, D.; Babková, H.; Peticzka, R.; Maier, A.; Arp, G.; Daniel, R.; Meister, P. Authigenic formation of Ca-Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences 2020, 17, 2085–2106. [Google Scholar] [CrossRef]
- Renaut, R.W. Morphology, distribution, and preservation potential of microbial mats in the hydromagnesite-magnesite playas of the Cariboo Plateau, British Columbia, Canada. Hydrobiologia 1993, 267, 75–98. [Google Scholar] [CrossRef]
- Phillips, K.N.; Van Denburgh, A.S. Hydrology and Geochemistry of Abert, Summer, and Goose Lakes, and Other Closed-Basin Lakes in South-Central Oregon; Professional Paper 502-B; U.S. Government Publishing Office: Washington, DC, USA, 1971.
- Rawson, D.S.; Moore, J.E. The Saline Lakes of Saskatchewan. Can. J. Res. 1944, 22, 141–201. [Google Scholar] [CrossRef]
- Mohamed, E.A.; El-Kammar, A.M.; Yehia, M.M.; Abu Salem, H.S. Hydrogeochemical evolution of inland lakes’ water: A study of major element geochemistry in the Wadi El Raiyan depression, Egypt. J. Adv. Res. 2014, 6, 1031–1044. [Google Scholar] [CrossRef]
- Yuretich, R.F.; Cerling, T.E. Hydrogeochemistry of Lake Turkana, Kenya: Mass balance and mineral reactions in an alkaline lake. Geochim. Cosmochim. Acta 1983, 47, 1099–1109. [Google Scholar] [CrossRef]
- Hirst, J.F. Sedimentology, Diagenesis and Hydrochemistry of the Saline, Alkaline Lakes on the Cariboo Plateau, Interior British Columbia, Canada; University of Saskatchewan: Saskatoon, SK, Canada, 1995. [Google Scholar]
- Whitehead, H.C.; Feth, J.H. Recent Chemical Analyses of Waters from Several Closed-Basin Lakes and their Tributaries in the Western United States. Geol. Soc. Am. Bull. 1961, 72, 1421–1426. [Google Scholar] [CrossRef]
- Moussa, A.; Novello, A.; Lebatard, A.E.; Decarreau, A.; Fontaine, C.; Barboni, D.; Sylvestre, F.; Bourlès, D.L.; Paillès, C.; Buchet, G.; et al. Lake Chad sedimentation and environments during the late Miocene and Pliocene: New evidence from mineralogy and chemistry of the Bol core sediments. J. Afr. Earth Sci. 2016, 118, 192–204. [Google Scholar] [CrossRef]
- Kent, D.B.; Kastner, M. Mg2+ removal in the system Mg2+-amorphous SiO2-H2O by adsorption and Mg-hydroxysilicate precipitation. Geochim. Cosmochim. Acta 1985, 49, 1123–1136. [Google Scholar] [CrossRef]
- Case, D.H.; Wang, F.; Giammar, D.E. Precipitation of magnesium carbonates as a function of temperature, solution composition, and presence of a silicate mineral substrate. Environ. Eng. Sci. 2011, 28, 881–889. [Google Scholar] [CrossRef]
- Berninger, U.-N.; Jordan, G.; Schott, J.; Oelkers, E.H. The experimental determination of hydromagnesite precipitation rates at 22.5–75 °C. Mineral. Mag. 2014, 78, 1405–1416. [Google Scholar] [CrossRef]
- Peterson, M.N.A.; Von Der Borch, C.C. Chert: Modern Inorganic Deposition in a Carbonate-Precipitating Locality. Science 1965, 149, 1501–1503. [Google Scholar] [CrossRef]
- Nied, D.; Enemark-Rasmussen, K.; L’Hopital, E.; Skibsted, J.; Lothenbach, B. Properties of magnesium silicate hydrates (M-S-H). Cem. Concr. Res. 2016, 79, 323–332. [Google Scholar] [CrossRef]
- Gunnarsson, I.; Arnórsson, S.; Jakobsson, S. Precipitation of poorly crystalline antigorite under hydrothermal conditions. Geochim. Cosmochim. Acta 2005, 69, 2813–2828. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chase, J.E.; Arizaleta, M.L.; Tutolo, B.M. A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2. Minerals 2021, 11, 106. https://doi.org/10.3390/min11020106
Chase JE, Arizaleta ML, Tutolo BM. A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2. Minerals. 2021; 11(2):106. https://doi.org/10.3390/min11020106
Chicago/Turabian StyleChase, Jasmine E., Maria L. Arizaleta, and Benjamin M. Tutolo. 2021. "A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2" Minerals 11, no. 2: 106. https://doi.org/10.3390/min11020106
APA StyleChase, J. E., Arizaleta, M. L., & Tutolo, B. M. (2021). A Series of Data-Driven Hypotheses for Inferring Biogeochemical Conditions in Alkaline Lakes and Their Deposits Based on the Behavior of Mg and SiO2. Minerals, 11(2), 106. https://doi.org/10.3390/min11020106