Geochemical Insights from Clinopyroxene Phenocrysts into the Magma Evolution of an Alkaline Magmatic System from the Sanshui Basin, South China
Abstract
:1. Introduction
2. Geologic Setting
3. Materials and Methods
4. Petrography and Mineralogy
4.1. Characteristics of Petrography
4.2. Characteristics of Clinopyroxene
5. Results
5.1. Clinopyroxene in Basalt
5.2. Clinopyroxene in Trachyandesite
5.3. Clinopyroxene in Comenditic Trachyte
6. Discussion
6.1. Clinopyroxene-Melt Equilibrium
6.2. Calculation of the Pressure-Temperature Conditions of Crystallization
6.3. Petrogenesis of Clinopyroxenes
6.3.1. Petrogenesis of B1 and B2 Type Clinopyroxenes
6.3.2. Petrogenesis of B3 Type Clinopyroxenes
6.3.3. Petrogenesis of B4 Type Clinopyroxenes
6.3.4. Petrogenesis of A1 and T1 Type Clinopyroxenes
6.3.5. Petrogenesis of T2 and T3 Type Clinopyroxenes
6.3.6. Petrogenesis of T4 Type Clinopyroxenes
6.4. Fractional Crystallization
6.5. Magma Plumbing System
7. Conclusions
- (1)
- Clinopyroxenes in bimodal volcanic rocks from the Sanshui Basin can be classified into nine types according to their optical characteristics, major and trace element contents, with four types in basalts, one type in trachyandesite, and four types in comenditic trachyte.
- (2)
- With the evolutionary sequence of basalt-trachyandesite-comenditic trachyte- comendite/pantellerite, while the clinopyroxenes present an evolutionary sequence of diopside-hedenbergite-aegirine, characterized by decrease in the Mg# value and Eu*/Eu and increase in the REE content during magma evolution.
- (3)
- The dominate abundance of B1, B2, T2 type clinopyroxenes involves fractional crystallization in a closed system. The reversed zoning of B3 type green-core clinopyroxenes and the multiple zoning of B4 type clinopyroxenes were derived from the open system during magma evolution. The antecrysts consisting of A1 and T1 type clinopyroxenes provide the evidence for magma mixing and magma recharge beneath the Sanshui Basin.
- (4)
- Thermobarometric calculations in bimodal volcanic rocks from the Sanshui Basin show that clinopyroxene crystallized at several structural levels in the crust during magma ascent. Further, the basaltic magma reservoirs are distributed from lithospheric mantle (~40 km) to the upper crust (~10 km), and the comenditic trachyte reservoir is distributed in the upper crust (5–10 km).
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Batki, A.; Pál-Molnár, E.; Jankovics, M.É.; Kerr, A.C.; Kiss, B.; Markl, G.; Heincz, A.; Harangi, S. Insights into the evolution of an alkaline magmatic system: An in situ trace element study of clinopyroxenes from the Ditrău Alkaline Massif, Romania. Lithos 2018, 300, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Coote, A.; Shane, P. Open-system magmatic behaviour beneath monogenetic volcanoes revealed by the geochemistry, texture and thermobarometry of clinopyroxene, Kaikohe-Bay of Islands volcanic field (New Zealand). J. Volcanol. Geoth. Res. 2018, 368, 51–62. [Google Scholar] [CrossRef]
- Rossi, S.; Petrelli, M.; Morgavi, D.; Vetere, F.P.; Almeev, R.R.; Astbury, R.L.; Perugini, D. Role of magma mixing in the pre-eruptive dynamics of the Aeolian Islands volcanoes (Southern Tyrrhenian Sea, Italy). Lithos 2019, 324, 165–179. [Google Scholar] [CrossRef]
- Perugini, D.; Poli, G. The mixing of magmas in plutonic and volcanic environments: Analogies and differences. Lithos 2012, 153, 261–277. [Google Scholar] [CrossRef]
- Streck, M.J.; Dungan, M.A.; Malavassi, E.; Reagan, M.K.; Bussy, F. The role of basalt replenishment in the generation of basaltic andesites of the ongoing activity at Arenal volcano, Costa Rica: Evidence from clinopyroxene and spinel. B. Volcanol. 2002, 64, 316–327. [Google Scholar] [CrossRef]
- Hughes, G.E.; Petrone, C.M.; Downes, H.; Varley, N.R.; Hammond, S.J. Mush remobilisation and mafic recharge: A study of the crystal cargo of the 2013–17 eruption at Volcán de Colima, Mexico. J. Volcanol. Geoth. Res. 2021, 416, 107296. [Google Scholar] [CrossRef]
- Nakagawa, M.; Wada, K.; Wood, C. Mixed magmas, mush chambers and eruption triggers: Evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu volcano, New Zealand. J. Petrol. 2002, 43, 2279–2303. [Google Scholar] [CrossRef] [Green Version]
- Streck, M.J. Mineral Textures and Zoning as Evidence for Open System Processes. Rev. Mineral. Geochem. 2008, 69, 595–622. [Google Scholar] [CrossRef]
- Mollo, S.; Blundy, J.; Scarlato, P.; De Cristofaro, S.P.; Tecchiato, V.; Di Stefano, F.; Vetere, F.; Holtz, F.; Bachmann, O. An integrated P-T-H2O-lattice strain model to quantify the role of clinopyroxene fractionation on REE plus Y and HFSE patterns of mafic alkaline magmas: Application to eruptions at Mt. Etna. Earth-Sci. Rev. 2018, 185, 32–56. [Google Scholar] [CrossRef]
- Nazzareni, S.; Molin, G.; Peccerillo, A.; Zanazzi, P. Volcanological implications of crystal-chemical variations in clinopyroxenes from the Aeolian Arc, Southern Tyrrhenian Sea (Italy). B. Volcanol. 2001, 63, 73–82. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, Y.; Zhao, Z. Geochemical insights from clinopyroxene phenocrysts into the effect of magmatic processes on petrogenesis of intermediate volcanics. Lithos 2018, 316, 137–153. [Google Scholar] [CrossRef]
- Di Stefano, F.; Mollo, S.; Ubide, T.; Petrone, C.M.; Caulfield, J.; Scarlato, P.; Nazzari, M.; Andronico, D.; Del Bello, E. Mush cannibalism and disruption recorded by clinopyroxene phenocrysts at Stromboli volcano: New insights from recent 2003–2017 activity. Lithos 2020, 360, 105440. [Google Scholar] [CrossRef]
- Jankovics, M.E.; Taracsak, Z.; Dobosi, G.; Embey-Isztin, A.; Batki, A.; Harangi, S.; Hauzenberger, C.A. Clinopyroxene with diverse origins in alkaline basalts from the western Pannonian Basin: Implications from trace element characteristics. Lithos 2016, 262, 120–134. [Google Scholar] [CrossRef]
- Leite De Oliveira, A.; Costa Dos Santos, A.; Nogueira, C.C.; Maia, T.M.; Geraldes, M.C. Green core clinopyroxenes from Martin Vaz Archipelago Plio-Pleistocenic alkaline rocks, South Atlantic Ocean, Brazil: A magma mixing and polybaric crystallization record. J. S. Am. Earth Sci. 2021, 105, 102951. [Google Scholar] [CrossRef]
- Li, X.; Zeng, Z.; Yang, H.; Zhao, Y.; Yin, X.; Wang, X.; Chen, S.; Qi, H.; Guo, K. Integrated major and trace element study of clinopyroxene in basic, intermediate and acidic volcanic rocks from the middle Okinawa Trough: Insights into petrogenesis and the influence of subduction component. Lithos 2020, 352, 105320. [Google Scholar] [CrossRef]
- Ovung, T.N.; Ray, J.; Ghosh, B.; Koeberl, C.; Topa, D.; Paul, M. Clinopyroxene composition of volcanics from the Manipur Ophiolite, Northeastern India: Implications to geodynamic setting. Int. J. Earth Sci. 2018, 107, 1215–1229. [Google Scholar] [CrossRef]
- Svetov, S.A.; Chazhengina, S.Y.; Stepanova, A.V. Geochemistry and Texture of Clinopyroxene Phenocrysts from Paleoproterozoic Picrobasalts, Karelian Craton, Fennoscandian Shield: Records of Magma Mixing Processes. Minerals 2020, 10, 434. [Google Scholar] [CrossRef]
- Ubide, T.; Gale, C.; Arranz, E.; Lago, M.; Larrea, P. Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): A record of magma history and a window to mineral-melt partitioning. Lithos 2014, 184, 225–242. [Google Scholar] [CrossRef]
- Villaseca, C.; García Serrano, J.; Orejana, D. Pyroxenites and Megacrysts From Alkaline Melts of the Calatrava Volcanic Field (Central Spain): Inferences From Trace Element Geochemistry and Sr-Nd Isotope Composition. Front. Earth Sci. 2020, 8, 132. [Google Scholar] [CrossRef]
- Welsch, B.; Hammer, J.; Baronnet, A.; Jacob, S.; Hellebrand, E.; Sinton, J. Clinopyroxene in postshield Haleakala ankaramite: 2. Texture, compositional zoning and supersaturation in the magma. Contrib. Mineral. Petr. 2016, 171, 1–19. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, H.; Chen, Y.; Chang, X.; Hu, Y.; Xie, J. Geochronological and geochemical constraint on the Cenozoic extension of Cathaysian lithosphere and tectonic evolution of the border sea basins in East Asia. J. Asian Earth Sci. 2004, 24, 163–175. [Google Scholar]
- Chung, S.; Cheng, H.; Jahn, B.; O’Reilly, S.Y.; Zhu, B. Major and trace element, and Sr-Nd isotope constraints on the origin of Paleogene volcanism in South China prior to the South China Sea opening. Lithos 1997, 40, 203–220. [Google Scholar] [CrossRef]
- Zhou, H.; Xiao, L.; Dong, Y.; Wang, C.; Wang, F.; Ni, P. Geochemical and geochronological study of the Sanshui basin bimodal volcanic rock suite, China: Implications for basin dynamics in southeastern China. J. Asian Earth Sci. 2009, 34, 178–189. [Google Scholar] [CrossRef]
- Zhang, W.; Fang, N.; Yuan, X.; Cui, L. Geochemical and Mineralogical Investigation on Different Types of Cenozoic Basalts in the Sanshui Basin: Implications for Magma Mixing Processes. J. Earth Sci-China 2019, 30, 754–762. [Google Scholar] [CrossRef]
- Hou, M.; Ling, L.; Chen, H. Sedimentary and Tectonic evolution of Sanshui Basin, Guangdong Province; Geological Publishing House: Beijing, China, 2010; pp. 62–64. (in Chinese) [Google Scholar]
- Zhang, X.; Zhou, X.; Chen, X. Division and correlation Atlas of Cretaceous-Tertiary drilling strata in Sanshui Basin; Ocean Press: Beijing, China, 1993; p. 179. (in Chinese) [Google Scholar]
- Huang, H.; Guo, X.; Xia, S.; Qiu, X. Study of Crustal Thickness and Poisson’s Ratio in the Coastal Area of South China. Chin. J. Geophys. 2014, 57, 860–871. [Google Scholar]
- Yuan, X. The record of cenozoic magmatism in Sanshui Basin and its relationship with the early tectonic evolution stage of the South China Sea. Ph.D Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. [Google Scholar]
- Zhang, Y.; Fang, N. Source characteristics of basalts in Sanshui Basin and the early tectonic evolution stage of the South China Sea. Mar. Geol. Quat. Geol. 2021, 41, 95–113, (in Chinese with English abstract). [Google Scholar]
- Liu, Y.; Hu, Z.; Gao, S.; Günther, D.; Xu, J.; Gao, C.; Chen, H. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 2008, 257, 34–43. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Zong, K.; Gao, C.; Gao, S.; Xu, J.; Chen, H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Marks, M.; Halama, R.; Wenzel, T.; Markl, G. Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: Implications for mineral-melt trace-element partitioning. Chem. Geol. 2004, 211, 185–215. [Google Scholar] [CrossRef]
- Morimoto, N.; Fabries, J.; Ferguson, A.K.; Ginzburg, I.V.; Ross, M.; Seifert, F.A.; Zussman, J.; Aoki, K.; Gottardi, G. Nomenclature of pyroxenes. Am. Mineral. 1988, 73, 1123–1133. [Google Scholar]
- Zhang, H.; Zheng, J.; Pan, S.; Lu, J.; Li, Y.; Xiang, L.; Lin, A. Compositions and processes of lithospheric mantle beneath the west Cathaysia block, southeast China. Lithos 2017, 286, 241–251. [Google Scholar] [CrossRef]
- Geng, X.; Liu, Y.; Zhang, W.; Wang, Z.; Hu, Z.; Zhou, L.; Liang, Z. The effect of host magma infiltration on the Pb isotopic systematics of lower crustal xenolith: An in-situ study from Hannuoba, North China. Lithos 2020, 366–367, 105556. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, J.; Lu, J.; Pan, S.; Zhao, Y.; Lin, A.; Xiang, L. Composition and evolution of the lithospheric mantle beneath the interior of the South China Block: Insights from trace elements and water contents of peridotite xenoliths. Contrib. Mineral. Petr. 2018, 173, 53. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Li, X.; Li, J.; Liu, Y.; Long, W.; Zhou, J.; Wang, F. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume close to Subduction Zones? J. Petrol. 2012, 53, 177–233. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Davidson, J.P.; Morgan, D.J.; Charlier, B.L.A.; Harlou, R.; Hora, J.M. Microsampling and Isotopic Analysis of Igneous Rocks: Implications for the Study of Magmatic Systems. Annu. Rev. Earth. Pl. Sc. 2007, 35, 273–311. [Google Scholar] [CrossRef] [Green Version]
- Putirka, K.D. Thermometers and Barometers for Volcanic Systems. Rev. Mineral. Geochem. 2008, 69, 61–120. [Google Scholar] [CrossRef]
- Kluegel, A.; Day, S.; Schmid, M.; Faria, B. Magma Plumbing During the 2014–2015 Eruption of Fogo (Cape Verde Islands). Front. Earth Sci. 2020, 8, 157. [Google Scholar] [CrossRef]
- Perinelli, C.; Mollo, S.; Gaeta, M.; De Cristofaro, S.P.; Palladino, D.M.; Armienti, P.; Scarlato, P.; Putirka, K.D. An improved clinopyroxene-based hygrometer for Etnean magmas and implications for eruption triggering mechanisms. Am. Mineral. 2016, 101, 2774–2777. [Google Scholar] [CrossRef]
- Masotta, M.; Mollo, S.; Freda, C.; Gaeta, M.; Moore, G. Clinopyroxene-liquid thermometers and barometers specific to alkaline differentiated magmas. Contrib. Mineral. Petr. 2013, 166, 1545–1561. [Google Scholar] [CrossRef]
- Forni, F.; Degruyter, W.; Bachmann, O.; De Astis, G.; Mollo, S. Long-term magmatic evolution reveals the beginning of a new caldera cycle at Campi Flegrei. Sci. Adv. 2018, 4, eaat9401. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Fang, N.; Wang, Z.; Yuan, X. Petrogenesis and tectonic implications of Eocene peralkaline felsic volcanic rocks from the Sanshui Basin, Southern China. Lithos 2021. under review. [Google Scholar]
- Tao, Y.; Putirka, K.; Hu, R.; Li, C. The magma plumbing system of the Emeishan large igneous province and its role in basaltic magma differentiation in a continental setting. Am. Mineral. 2015, 100, 2509–2517. [Google Scholar] [CrossRef]
- Hart, S.R.; Dunn, T. Experimental cpx/melt partitioning of 24 trace elements. Contrib. Mineral. Petr. 1993, 113, 1–8. [Google Scholar] [CrossRef]
- Ziem À Bidias, L.A.; Chauhan, H.; Mekala, R.M.; Rao, N.V.C. Green core clinopyroxenes from basanites of Petpenoun volcanoes, Noun Plain, Cameroon volcanic line: Chemistry and genesis. B. Volcanol. 2021, 83, 13. [Google Scholar] [CrossRef]
- Neumann, E.R.; Wulff-Pedersen, E.; Simonsen, S.L.; Pearson, N.J.; Martí, J.; Mitjavila, J. Evidence for Fractional Crystallization of Periodically Refilled Magma Chambers in Tenerife, Canary Islands. J. Petrol. 1999, 40, 1089–1123. [Google Scholar] [CrossRef]
- Pilet, S.; Hernandez, J.; Villemant, B. Evidence for high silicic melt circulation and metasomatic events in the mantle beneath alkaline provinces: The Na-Fe-augitic green-core pyroxenes in the Tertiary alkali basalts of the Cantal massif (French Massif Central). Miner. Petrol. 2002, 76, 39–62. [Google Scholar] [CrossRef]
- Zhu, Y.; Ogasawara, Y. Clinopyroxene phenocrysts (with green salite cores) in trachybasalts: Implications for two magma chambers under the Kokchetav UHP massif, North Kazakhstan. J. Asian Earth Sci. 2004, 22, 517–527. [Google Scholar] [CrossRef]
- Baudouin, C.; France, L.; Boulanger, M.; Dalou, C.; Devidal, J. Trace element partitioning between clinopyroxene and alkaline magmas: Parametrization and role of M1 site on HREE enrichment in clinopyroxenes. Contrib. Mineral. Petr. 2020, 175, 42. [Google Scholar] [CrossRef]
- Olin, P.H.; Wolff, J.A. Rare earth and high field strength element partitioning between iron-rich clinopyroxenes and felsic liquids. Contrib. Mineral. Petr. 2010, 160, 761–775. [Google Scholar] [CrossRef] [Green Version]
- Bonechi, B.; Perinelli, C.; Gaeta, M. Clinopyroxene growth rates at high pressure: Constraints on magma recharge of the deep reservoir of the Campi Flegrei Volcanic District (south Italy). B. Volcanol. 2019, 82, 5. [Google Scholar] [CrossRef]
- Macdonald, R.; Bagiński, B.; Leat, P.T.; White, J.C.; Dzierżanowski, P. Mineral stability in peralkaline silicic rocks: Information from trachytes of the Menengai volcano, Kenya. Lithos 2011, 125, 553–568. [Google Scholar] [CrossRef]
- Di Carlo, I.; Rotolo, S.G.; Scaillet, B.; Buccheri, V.; Pichavant, M. Phase Equilibrium Constraints on Pre-eruptive Conditions of Recent Felsic Explosive Volcanism at Pantelleria Island, Italy. J. Petrol. 2010, 51, 2245–2276. [Google Scholar] [CrossRef] [Green Version]
- Barker, S.J.; Wilson, C.J.N.; Baker, J.A.; Millet, M.A.; Rotella, M.D.; Wright, I.C.; Wysoczanski, R.J. Geochemistry and Petrogenesis of Silicic Magmas in the Intra-Oceanic Kermadec Arc. J. Petrol. 2013, 54, 351–391. [Google Scholar] [CrossRef] [Green Version]
- Ayalew, D.; Pik, R.; Bellahsen, N.; France, L.; Yirgu, G. Differential Fractionation of Rhyolites During the Course of Crustal Extension, Western Afar (Ethiopian Rift). Geochem. Geophys. Geosyst. 2019, 20, 571–593. [Google Scholar] [CrossRef]
- Jeffery, A.J.; Gertisser, R.; Self, S.; Pimentel, A.; O’Driscoll, B.; Pacheco, J.M. Petrogenesis of the Peralkaline Ignimbrites of Terceira, Azores. J. Petrol. 2017, 58, 2365–2401. [Google Scholar] [CrossRef] [Green Version]
Type | Zoning | Texture | Abundance | Description |
---|---|---|---|---|
B1 | Unzoned | | 93 | Light yellow, colorless; no discernible zoning or Mg# variations < 2 |
B2 | Normal | | 5 | Light yellow, colorless; gradational normal zoning with a decrease in Mg# from core to rim |
B3 | Reverse | | 1 | Light green core with yellow rim, concentric zoning or patchy zoning; Mg# variations are usually >15 |
B4 | Multiple | | 1 | Light yellow; coarse banding zoning (100 mm); Mg# variations are usually ~ 10; reference from Zhang [24] |
A1 | Unzoned | | 100 | Light yellow; Mg# = 64 |
T1 | Unzoned | | 1 | Light yellow; Mg# = 75 |
T2 | Unzoned | | 65 | Light green; Mg# variations are scattered |
T3 | Unzoned | | 33 | Green; Mg# < 10 |
T4 | Unzoned | | 1 | Dark green; Mg# < 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Fang, N.; Yuan, X. Geochemical Insights from Clinopyroxene Phenocrysts into the Magma Evolution of an Alkaline Magmatic System from the Sanshui Basin, South China. Minerals 2021, 11, 1295. https://doi.org/10.3390/min11111295
Chen P, Fang N, Yuan X. Geochemical Insights from Clinopyroxene Phenocrysts into the Magma Evolution of an Alkaline Magmatic System from the Sanshui Basin, South China. Minerals. 2021; 11(11):1295. https://doi.org/10.3390/min11111295
Chicago/Turabian StyleChen, Peijia, Nianqiao Fang, and Xiaobo Yuan. 2021. "Geochemical Insights from Clinopyroxene Phenocrysts into the Magma Evolution of an Alkaline Magmatic System from the Sanshui Basin, South China" Minerals 11, no. 11: 1295. https://doi.org/10.3390/min11111295
APA StyleChen, P., Fang, N., & Yuan, X. (2021). Geochemical Insights from Clinopyroxene Phenocrysts into the Magma Evolution of an Alkaline Magmatic System from the Sanshui Basin, South China. Minerals, 11(11), 1295. https://doi.org/10.3390/min11111295