Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Sample Processing and Analysis
2.3. Assessment of Roadside Soil Contamination
2.4. Statistical Analysis
3. Results and Discussion
3.1. Metal Content of Roadside Soils
3.2. Evaluation Methods (Igeo, CF, PLI)
3.3. Spatial Distribution of Metals in Roadside Soils
3.4. Identification of Pollution Sources Using Statistical Analyses
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nizamutdinov, T.; Morgun, E.; Pechkin, A.; Kostecki, J.; Greinert, A.; Abakumov, E. Differentiation of trace metal contamination level between different urban functional zones in permafrost affected soils (The example of several cities in the Yamal Region, Russian arctic). Minerals 2021, 11, 668. [Google Scholar] [CrossRef]
- Tan, B.; Wang, H.; Wang, X.; Ma, C.; Zhou, J.; Dai, X. Health risks and source analysis of heavy metal pollution from dust in Tianshui, China. Minerals 2021, 11, 502. [Google Scholar] [CrossRef]
- Suryawanshi, P.V.; Rajaram, B.S.; Bhanarkar, A.D.; Chalapati Rao, C.V. Determining heavy metal contamination of road dust in Delhi, India. Atmosfera 2016, 29, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Meister, K.; Johansson, C.; Forsberg, B. Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden. Environ. Health Perspect. 2012, 120, 431–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nortjé, G.P.; Laker, M.C. Factors that determine the sorption of mineral elements in soils and their impact on soil and water pollution. Minerals 2021, 11, 821. [Google Scholar] [CrossRef]
- Economou-Eliopoulos, M.; Megremi, I. Contamination of the soil–groundwater–crop system: Environmental risk and opportunities. Minerals 2021, 11, 775. [Google Scholar] [CrossRef]
- GUS—Bank Danych Lokalnych. Available online: https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica (accessed on 12 November 2021).
- European Environment Agency. Air Quality in Europe—2016 Report; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar]
- Christoforidis, A.; Stamatis, N. Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece. Geoderma 2009, 151, 257–263. [Google Scholar] [CrossRef]
- Faiz, Y.; Tufail, M.; Javed, M.T.; Chaudhry, M.M. Naila-Siddique Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchem. J. 2009, 92, 186–192. [Google Scholar] [CrossRef]
- Johansson, C.; Norman, M.; Burman, L. Road traffic emission factors for heavy metals. Atmos. Environ. 2009, 43, 4681–4688. [Google Scholar] [CrossRef]
- Helmreich, B.; Hilliges, R.; Schriewer, A.; Horn, H. Runoff pollutants of a highly trafficked urban road—Correlation analysis and seasonal influences. Chemosphere 2010, 80, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Duong, T.T.T.; Lee, B.K. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manag. 2011, 92, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.N.; Wasim, A.A.; Sarwar, A.; Rasheed, M.F. Assessment of heavy metal toxicants in the roadside soil along the N-5, National Highway, Pakistan. Environ. Monit. Assess. 2011, 182, 587–595. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, Y.; Zhang, M. Mercury and cadmium contamination in traffic soil of Beijing, China. Bull. Environ. Contam. Toxicol. 2012, 88, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Barlow, T.J.; Boulter, P.G.; McCrae, I.S.; Harrison, R.M.; Carruthers, D.; Stocker, J. Non-Exhaust Particulate Matter Emissions from Road Traffic: Summary Report; Transport Research Laboratory: Crowthorne, UK, 2007. [Google Scholar]
- Querol, X.; Viana, M.; Alastuey, A.; Amato, F.; Moreno, T.; Castillo, S.; Pey, J.; de la Rosa, J.; Sánchez de la Campa, A.; Artíñano, B.; et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmos. Environ. 2007, 41, 7219–7231. [Google Scholar] [CrossRef]
- Thorpe, A.; Harrison, R.M. Sources and properties of non-exhaust particulate matter from road traffic: A review. Sci. Total Environ. 2008, 400, 270–282. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, E.R.; Money, J.E.; Green, P.G.; Young, T.M. Metals associated with stormwater-relevant brake and tire samples. Sci. Total Environ. 2009, 407, 5855–5860. [Google Scholar] [CrossRef] [Green Version]
- Carrero, J.A.; Goienaga, N.; Olivares, M.; Martinez-Arkarazo, I.; Arana, G.; Madariaga, J.M. Raman spectroscopy assisted with XRF and chemical simulation to assess the synergic impacts of guardrails and traffic pollutants on urban soils. J. Raman Spectrosc. 2012, 43, 1498–1503. [Google Scholar] [CrossRef]
- Pant, P.; Harrison, R.M. Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmos. Environ. 2013, 77, 78–97. [Google Scholar] [CrossRef]
- Popoola, O.E.; Bamgbose, O.; Okonkwo, O.J.; Arowolo, T.A.; Popoola, A.O.; Awofolu, O.R. Heavy Metals Content in Classroom Dust of Some Public Primary Schools in Metropolitan Lagos, Nigeria. Res. J. Environ. Earth Sci. 2012, 4, 460–465. [Google Scholar]
- Qiao, M.; Cai, C.; Huang, Y.; Liu, Y.; Lin, A.; Zheng, Y. Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environ. Monit. Assess. 2011, 172, 353–365. [Google Scholar] [CrossRef]
- Horváth, A.; Csáki, P.; Szita, R.; Kalicz, P.; Gribovszki, Z.; Bidló, A.; Bolodár-Varga, B.; Balázs, P.; Winkler, D. A Complex Soil Ecological Approach in a Sustainable Urban Environment: Soil Properties and Soil Biological Quality. Minerals 2021, 11, 704. [Google Scholar] [CrossRef]
- Koprivica, A.; Beljić, Č.; Vakanjac, B.; Vakanjac, V.R.; Ilić, M.Č. The content of toxic metals in agricultural produce near a coal mine: Case study KCB in Lazarevac, Serbia. Minerals 2018, 8, 131. [Google Scholar] [CrossRef] [Green Version]
- Kluge, B.; Wessolek, G. Heavy metal pattern and solute concentration in soils along the oldest highway of the world—The AVUS Autobahn. Environ. Monit. Assess. 2012, 184, 6469–6481. [Google Scholar] [CrossRef] [PubMed]
- Arowolo, T.A.; Bamgbose, O.; Odukoya, O.O. Environmental Sciences The chemical forms of lead in roadside dusts of metropolitan Lagos, Nigeria. Glob. J. Pure Appl. Sci. 2000, 6, 483–488. [Google Scholar] [CrossRef]
- Li, X.; Poon, C.S.; Liu, P.S. Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl. Geochemistry 2001, 16, 1361–1368. [Google Scholar] [CrossRef]
- Al-Shayeb, S.M.; Seaward, M.R.D. Heavy metal content of roadside soils along ring road in Riyadh (Saudi Arabia). Asian J. Chem. 2001, 13, 407–423. [Google Scholar]
- Arslan, H.; Gizir, A.M. Heavy-metal content of roadside soil in Mersin, Turkey. Fresenius Environ. Bull. 2006, 15, 15–20. [Google Scholar]
- Pérez, G.; López-Mesas, M.; Valiente, M. Assessment of heavy metals remobilization by fractionation: Comparison of leaching tests applied to roadside sediments. Environ. Sci. Technol. 2008, 42, 2309–2315. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631–632, 942–950. [Google Scholar] [CrossRef]
- De Silva, S.; Ball, A.S.; Huynh, T.; Reichman, S.M. Metal accumulation in roadside soil in Melbourne, Australia: Effect of road age, traffic density and vehicular speed. Environ. Pollut. 2016, 208, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, C.L.S.; Zereini, F.; Püttmann, W. Metal and metalloid accumulation in cultivated urban soils: A medium-term study of trends in Toronto, Canada. Sci. Total Environ. 2015, 538, 564–572. [Google Scholar] [CrossRef]
- Nannoni, F.; Protano, G. Chemical and biological methods to evaluate the availability of heavy metals in soils of the Siena urban area (Italy). Sci. Total Environ. 2016, 568, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Grigalavičiene, I.; Rutkoviene, V.; Marozas, V. The accumulation of heavy metals Pb, Cu and Cd at roadside forest soil. Polish J. Environ. Stud. 2005, 14, 109–115. [Google Scholar]
- Zhou, J.; Du, B.; Wang, Z.; Zhang, W.; Xu, L.; Fan, X.; Liu, X.; Zhou, J. Distributions and pools of lead (Pb) in a terrestrial forest ecosystem with highly elevated atmospheric Pb deposition and ecological risks to insects. Sci. Total Environ. 2019, 647, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Hui, Z.; Caiqiu, W.; Jiping, G.; Xuyin, Y.; Qiao, W.; Wenming, P.; Tao, L.; Jie, Q.; Hanpei, Z. Assessment of heavy metal contamination in roadside soils along the Shenyang-Dalian highway in liaoning province, China. Polish J. Environ. Stud. 2017, 26, 1539–1549. [Google Scholar] [CrossRef]
- Dong, Y.; Liu, S.; Sun, Y.; Liu, Y.; Wang, F. Effects of landscape features on the roadside soil heavy metal distribution in a tropical area in Southwest China. Appl. Sci. 2021, 11, 1408. [Google Scholar] [CrossRef]
- Dudka, S. Factor analysis of total element concentrations in surface soils of Poland. Sci. Total Environ. 1992, 121, 39–52. [Google Scholar] [CrossRef]
- Szwalec, A.; Mundała, P.; Kędzior, R.; Pawlik, J. Monitoring and assessment of cadmium, lead, zinc and copper concentrations in arable roadside soils in terms of different traffic conditions. Environ. Monit. Assess. 2020, 192, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krailertrattanachai, N.; Ketrot, D.; Wisawapipat, W. Distribution of trace metals in roadside agricultural soils, Thailand. Int. J. Environ. Res. Public Health 2019, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuszkiewicz, J.M. Zespoły Leśne Polski; Wydawnictwo Naukowe PWN: Warszawa, Poland, 2001; ISBN 978-83-01-14555-2. [Google Scholar]
- Górniak, A. Klimat Województwa Podlaskiego; IMiGW: Białystok, Poland, 2000; ISBN 838517687X. [Google Scholar]
- Wang, M.; Zhang, H. Accumulation of heavy metals in roadside soil in urban area and the related impacting factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, B.; Yang, L. A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem. J. 2010, 94, 99–107. [Google Scholar] [CrossRef]
- Rolka, E.; Żołnowski, A.C.; Sadowska, M.M. Assessment of heavy metal content in soils adjacent to the DK16-route in Olsztyn (North-Eastern Poland). Polish J. Environ. Stud. 2020, 29, 4303–4311. [Google Scholar] [CrossRef]
- Thomas, G.W. Methods of Soil Analysis, Part 3: Chemical Methods. In Soil pH and Soil Acidity; Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 1996; pp. 475–490. ISBN 9780891188667. [Google Scholar]
- Ben-Dor, E.; Banin, A. Determination of organic matter content in arid-zone soils using a simple “loss-on-ignition” method. Commun. Soil Sci. Plant Anal. 1989, 20, 1675–1695. [Google Scholar] [CrossRef]
- Ball, D.F. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcereous soils. J. Soil Sci. 1964, 15, 84–92. [Google Scholar] [CrossRef]
- Konare, H.; Yost, R.S.; Doumbia, M.; Mccarty, G.W.; Jarju, A.; Kablan, R. Loss on ignition: Measuring soil organic carbon in soils of the sahel, West Africa. Afr. J. Agric. Res. 2010, 5, 3088–3095. [Google Scholar] [CrossRef]
- Straz, G. Analiza wpływu temperatury na wielkość strat masy przy prażeniu wybranego rodzaju torfu. Przegląd Nauk. Inżynieria Kształtowanie Sr. 2016, 25, 264–276. [Google Scholar]
- Turekian, K.; Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth’s Crust. Geol. Soc. Am. Bull. 1961, 72, 175–192. [Google Scholar] [CrossRef]
- Dytłow, S.; Górka-Kostrubiec, B. Concentration of heavy metals in street dust: An implication of using different geochemical background data in estimating the level of heavy metal pollution. Environ. Geochem. Health 2021, 43, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Czarnowska, K. Ogolna zawartosc metali ciezkich w skalach macierzystych jako tlo geochemiczne gleb. Rocz. Glebozn. Supl. 1996, 47, 43–50. [Google Scholar]
- Sutkowska, K.; Teper, L.; Czech, T.; Hulok, T.; Olszak, M.; Zogala, J. Quality of peri-urban soil developed from ore-bearing carbonates: Heavy metal levels and source apportionment assessed using pollution indices. Minerals 2020, 10, 1140. [Google Scholar] [CrossRef]
- Korzeniowska, J.; Krąż, P. Article heavy metals content in the soils of the tatra national park near lake morskie oko and kasprowy wierch—a case study (Tatra mts, central Europe). Minerals 2020, 10, 1120. [Google Scholar] [CrossRef]
- Müller, G. Schwermetalle in den Sedimenten des Rheins—Veränderungen seit 1971. Umsch. Wiss. Tech. 1979, 79, 778–783. [Google Scholar]
- Hakanson, L. An ecological risk index for aquatic pollution control.a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Harikumar, P.S.; Nasir, U.P.; Rahman, M.P.M. Distribution of heavy metals in the core sediments of a tropical wetland system. Int. J. Environ. Sci. Technol. 2009, 6, 225–232. [Google Scholar] [CrossRef] [Green Version]
- Reeder, S.W.; Hitchon, B.; Levinson, A.A. Hydrogeochemistry of the surface waters of the Mackenzie River drainage basin, Canada-I. Factors controlling inorganic composition. Geochim. Cosmochim. Acta 1972, 36, 825–865. [Google Scholar] [CrossRef]
- Puckett, L.J.; Bricker, O.P. Factors controlling the major ion chemistry of streams in the blue ridge and valley and ridge physiographic provinces of Virginia and Maryland. Hydrol. Process. 1992, 6, 79–97. [Google Scholar] [CrossRef]
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Taghipour, M.; Ayoubi, S.; Khademi, H. Contribution of Lithologic and Anthropogenic Factors to Surface Soil Heavy Metals in Western Iran Using Multivariate Geostatistical Analyses. Soil Sediment Contam. 2011, 20, 921–937. [Google Scholar] [CrossRef]
- Onder, S.; Dursun, S. Air borne heavy metal pollution of Cedrus libani (A. Rich.) in the city centre of Konya (Turkey). Atmos. Environ. 2006, 40, 1122–1133. [Google Scholar] [CrossRef]
- Tokalioǧlu, Ş.; Kartal, Ş. Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmos. Environ. 2006, 40, 2797–2805. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, L.Y.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.D.; Davies, T.D.; Wigington, P.J.; Tranter, M.; Kretser, W.A. Use of factor analysis to investigate processes controlling the chemical composition of four streams in the Adirondack Mountains, New York. J. Hydrol. 1996, 185, 297–316. [Google Scholar] [CrossRef]
- Turer, D.G.; Maynard, B.J. Heavy metal contamination in highway soils. Comparison of Corpus Christi, Texas and Cincinnati, Ohio shows organic matter is key to mobility. Clean Technol. Environ. Policy 2003, 4, 235–245. [Google Scholar] [CrossRef]
- Kocher, B.; Wessolek, G.; Stoffregen, H. Water and heavy metal transport in roadside soils. Pedosphere 2005, 15, 746–753. [Google Scholar]
- Karczewska, A. Perspektywy zastosowania fitoremediacji w rekultywacji gleb zanieczyszczonych metalami ciezkimi. Ochr. Sr. Zasobów Nat. 2003, 2003, 27–54. [Google Scholar]
- Guala, S.; Vega, F.A.; Covelo, E.F. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations. Environ. Monit. Assess. 2013, 185, 73–80. [Google Scholar] [CrossRef]
- Mao, L.; Bailey, E.H.; Chester, J.; Dean, J.; Ander, E.L.; Chenery, S.R.; Young, S.D. Lability of Pb in soil: Effects of soil properties and contaminant source. Environ. Chem. 2014, 11, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Xia, X.; Wu, S.; Wang, F.; Guo, X. Mercury in urban soils with various types of land use in Beijing, China. Environ. Pollut. 2010, 158, 48–54. [Google Scholar] [CrossRef]
- Chen, H.; Lu, X.; Li, L.Y.; Gao, T.; Chang, Y. Metal contamination in campus dust of Xi’an, China: A study based on multivariate statistics and spatial distribution. Sci. Total Environ. 2014, 484, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Moreno, T.; Pandolfi, M.; Querol, X.; Lavín, J.; Alastuey, A.; Viana, M.; Gibbons, W. Manganese in the urban atmosphere: Identifying anomalous concentrations and sources. Environ. Sci. Pollut. Res. 2011, 18, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Karar, K.; Gupta, A.K.; Kumar, A.; Biswas, A.K. Characterization and identification of the sources of chromium, zinc, lead, cadmium, nickel, manganese and Iron in PM10 particulates at the two sites of Kolkata, India. Environ. Monit. Assess. 2006, 120, 347–360. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, M.; Gać, P.; Poręba, R.; Andrzejak, R. Zmiany w układzie sercowo-naczyniowym zwierząt poddanch intoksykacji związkami manganu. Med. Pr. 2008, 58, 387–393. [Google Scholar]
- Lucchini, R.G.; Aschner, M.; Kim, Y.; Šarić, M. Manganese. In Handbook on the Toxicology of Metals, 4th ed.; Academic Press: Cambridge, MA, USA, 2015; Volume 1, pp. 975–1011. ISBN 9780123973399. [Google Scholar]
- Hernández-Pellón, A.; Fernández-Olmo, I. Using multi-site data to apportion PM-bound metal(loid)s: Impact of a manganese alloy plant in an urban area. Sci. Total Environ. 2019, 651, 1476–1488. [Google Scholar] [CrossRef]
- Davis, A.P.; Shokouhian, M.; Ni, S. Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 2001, 44, 997–1009. [Google Scholar] [CrossRef]
- Ozaki, H.; Watanabe, I.; Kuno, K. Investigation of the Heavy Metal Sources in Relation to Automobiles. Water, Air, Soil Pollut. 2004 1571 2004, 157, 209–223. [Google Scholar] [CrossRef]
- Smolders, E.; Degryse, F. Fate and effect of zinc from tire debris in soil. Environ. Sci. Technol. 2002, 36, 3706–3710. [Google Scholar] [CrossRef] [PubMed]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perugini, M.; Manera, M.; Grotta, L.; Abete, M.C.; Tarasco, R.; Amorena, M. Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: Honeybees as bioindicators. Biol. Trace Elem. Res. 2011, 140, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, T.; Chakraborty, S.; Tuteja, D.; Patel, M. Zinc and chromium load in road dust, suspended particulate matter and foliar dust deposits of Anand City, Gujarat. Open J. Met. 2013, 3, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001; ISBN 0849315751. [Google Scholar]
- Yang, Z.; Lu, W.; Long, Y.; Bao, X.; Yang, Q. Assessment of heavy metals contamination in urban topsoil from Changchun City, China. J. Geochemical Explor. 2011, 108, 27–38. [Google Scholar] [CrossRef]
- Yesilonis, I.D.; Pouyat, R.V.; Neerchal, N.K. Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines. Environ. Pollut. 2008, 156, 723–731. [Google Scholar] [CrossRef]
- Rajaram, B.S.; Suryawanshi, P.V.; Bhanarkar, A.D.; Rao, C.V.C. Heavy metals contamination in road dust in Delhi city, India. Environ. Earth Sci. 2014, 72, 3929–3938. [Google Scholar] [CrossRef]
- Kelepertzis, E. Accumulation of heavy metals in agricultural soils of Mediterranean: Insights from Argolida basin, Peloponnese, Greece. Geoderma 2014, 221–222, 82–90. [Google Scholar] [CrossRef]
- Srivastava, V.; Sarkar, A.; Singh, S.; Singh, P.; de Araujo, A.S.F.; Singh, R.P. Agroecological responses of heavy metal pollution with special emphasis on soil health and plant performances. Front. Environ. Sci. 2017, 5, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Nabulo, G.; Oryem-Origa, H.; Diamond, M. Assessment of lead, cadmium, and zinc contamination of roadside soils, surface films, and vegetables in Kampala City, Uganda. Environ. Res. 2006, 101, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Hjortenkrans, D.; Bergbäck, B.; Häggerud, A. New metal emission patterns in road traffic environments. Environ. Monit. Assess. 2006, 117, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Morse, N.; Walter, M.T.; Osmond, D.; Hunt, W. Roadside soils show low plant available zinc and copper concentrations. Environ. Pollut. 2016, 209, 30–37. [Google Scholar] [CrossRef] [Green Version]
- Robertson, D.J.; Taylor, K.G.; Hoon, S.R. Geochemical and mineral magnetic characterisation of urban sediment particulates, Manchester, UK. Appl. Geochem. 2003, 18, 269–282. [Google Scholar] [CrossRef]
- Crosby, C.J.; Booth, C.A.; Worsley, A.T.; Fullen, M.A.; Searle, D.E.; Khatib, J.M.; Winspear, C.M. Application of mineral magnetic concentration measurements as a particle size proxy for urban road deposited sediments. WIT Trans. Ecol. Environ. 2009, 123, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Carrero, J.A.; Goienaga, N.; Barrutia, O.; Artetxe, U.; Arana, G.; Hernández, A.; Becerril, J.M.; Madariaga, J.M. Diagnosing the Impact of Traffic on Roadside Soils Through Chemometric Analysis on the Concentrations of More Than 60 Metals Measured by ICP/MS. In Highway and Urban Environment; Rauch, S., Morrison, G., Monzón, A., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 329–336. [Google Scholar]
- Wang, S.; Cai, L.M.; Wen, H.H.; Luo, J.; Wang, Q.S.; Liu, X. Spatial distribution and source apportionment of heavy metals in soil from a typical county-level city of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef]
- Werkenthin, M.; Kluge, B.; Wessolek, G. Metals in European roadside soils and soil solution—A review. Environ. Pollut. 2014, 189, 98–110. [Google Scholar] [CrossRef]
- Świetlik, R.; Strzelecka, M.; Trojanowska, M. Evaluation of traffic-related heavy metals emissions using noise barrier road dust analysis. Pol. J. Environ. Stud. 2013, 22, 561–567. [Google Scholar]
- Chen, X.; Xia, X.; Zhao, Y.; Zhang, P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010, 181, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Millán, E. Assessment of Cd, Pb and Zn contamination in roadside soils and grasses from Gipuzkoa (Spain). Chemosphere 1998, 37, 1615–1625. [Google Scholar] [CrossRef]
- Jordan, R.N.; Yonge, D.R.; Hathhorn, W.E. Enhanced mobility of Pb in the presence of dissolved natural organic matter. J. Contam. Hydrol. 1997, 29, 59–80. [Google Scholar] [CrossRef] [Green Version]
- Hassellöv, M.; von der Kammer, F. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 2008, 4, 401–406. [Google Scholar] [CrossRef]
- Adamiec, E. Road environments: Impact of metals on human health in heavily congested cities of Poland. Int. J. Environ. Res. Public Health 2017, 14, 697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poperechna, N.; Heumann, K.G. Species-specific GC/ICP-IDMS for trimethyllead determinations in biological and environmental samples. Anal. Chem. 2005, 77, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Bach, A. Przeprowadzenie Badań Zanieczyszczenia Metalami Ciężkimi Gleb Terenów Zieleni Przylegających do Ciągów Komunikacyjnych i Ocena Stopnia Zasolenia Wraz z Oznaczeniem Poziomu pH Gleb; Uniwersytet Rolniczy im. Hugona Kołłątaja w Krakowie, Gmina Miejska z siedzibą w Krakowie – Urząd Miasta Krakowa, Plac Wszystkich Świętych 3-4: Kraków, Poland, 2011. [Google Scholar]
- Alloway, B.J. Sources of Heavy Metals and Metalloids in Soils. In Heavy Metals in Soils; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 11–50. [Google Scholar]
- Olukanni, D.O.; Adeoye, D. Heavy Metal Concentrations in Road Side Soils from Selected Locations in the Lagos Metropolis, Nigeria. Int. J. Eng. Technol. 2012, 2, 1743–1752. [Google Scholar]
- Popescu, C.G. Relation between vehicle traffic and heavy metals content from the particulate matters. Rom. Rep. Phys. 2011, 63, 471–482. [Google Scholar]
- Amusan, A.A.; Bada, S.B.; Salami, A.T. Effect of traffic density on heavy metal content of soil and vegetation along roadsides in Osun state, Nigeria. West Afr. J. Appl. Ecol. 2003, 4, 107–114. [Google Scholar] [CrossRef]
Type of Land Use | Research Points | Characteristics |
---|---|---|
urban | 1–5, 15, 24, 35–39 | points located in cities with large populations, Białystok (296,628), Suwałki (69,626), Augustów (30,373), and along roads passing through smaller towns, near single- or multi-family housing and services |
rural | 6, 7, 11–14, 18, 23, 45 | points next to the road that runs through smaller villages, close to single-family and farm buildings |
forestal | 8, 10, 17, 22, 33, 34, 41, 43 | points located near road that passes through large forest complexes, including naturally valuable areas protected by the Natura2000 programme (Knyszyn Forest, Biebrza Valley, Augustów Primeval Forest, Suwałki Landscape Park) |
agricultural | 9, 16, 19–21, 25–32, 40, 42, 44 | points near land used for cultivation or used for grazing animals kept for farming purposes |
Geoaccumulation Index (Igeo) | Contamination Factor (CF) | Pollution Load Index (PLI) | |||
---|---|---|---|---|---|
Value | Soil Quality | Value | Soil Contamination | Value | Pollution Status |
Igeo ≤ 0 | uncontaminated | CF < 1 1 ≤ CF < 3 3 ≤ CF< 6 CF ≥ 6 | low moderate considerable very high | PLI = 0 0 < PLI ≤ 1 PLI > 1 | denote perfection only baseline levels of pollution deterioration of soil quality |
0 < Igeo < 1 | uncontaminated to moderately contaminated | ||||
1 < Igeo < 2 | moderately contaminated | ||||
2 < Igeo < 3 | moderately to strongly contaminated | ||||
3 < Igeo < 4 | strongly contaminated | ||||
4 < Igeo < 5 | strongly to extremely contaminated | ||||
Igeo ≥ 5 | extremely contaminated |
Parameter (n = 45) | Geochemical Background | Average | Median | Min | Max | SD | CV [%] | S-W Test |
---|---|---|---|---|---|---|---|---|
Fe | 47,200 a 12,900 b | 4604.89 | 4380.00 | 1350.00 | 9210.00 | 1801.99 | 39 | 0.043 |
Mn | 850 a 289.0 b | 155.86 | 150.98 | 61.80 | 323.92 | 55.39 | 36 | 0.116 |
Zn | 95 a 30.0 b | 74.80 | 63.18 | 26.46 | 215.02 | 42.97 | 57 | 0.000 |
Cr | 90 a 27.0 b | 14.24 | 13.80 | 8.13 | 29.47 | 2.94 | 21 | 0.000 |
Cu | 45 a 7.1 b | 9.65 | 7.52 | 0.51 | 41.39 | 7.83 | 81 | 0.000 |
Pb | 20 a 9.8 b | 9.43 | 8.08 | 4.10 | 23.49 | 4.18 | 44 | 0.000 |
Ni | 68 a 10.2 b | 6.56 | 6.58 | 4.60 | 11.68 | 1.21 | 18 | 0.000 |
Cd | 0.3 a 0.18 b | 1.12 | 1.14 | 0.83 | 1.36 | 0.11 | 10 | 0.741 |
pH | - | - | - | 4.45 | 8.14 | 0.88 | 12 | - |
MO | - | 4.69 | 4.50 | 2.24 | 9.13 | 1.70 | 36 | 0.013 |
traffic p/d | - | 10,583.64 | 9530.00 | 6753.00 | 21,670.00 | 3493.30 | 33 | 0.000 |
traffic | pH | MO | Cu | Cd | Ni | Pb | Cr | Zn | Mn | Fe | |
---|---|---|---|---|---|---|---|---|---|---|---|
traffic | 1.00 | ||||||||||
pH | −0.11 | 1.00 | |||||||||
MO | −0.05 | −0.44 | 1.00 | ||||||||
Cu | −0.02 | 0.03 | −0.03 | 1.00 | |||||||
Cd | −0.17 | −0.09 | 0.21 | 0.28 | 1.00 | ||||||
Ni | −0.02 | 0.14 | 0.00 | 0.37 | 0.00 | 1.00 | |||||
Pb | 0.41 | −0.31 | 0.26 | 0.30 | 0.19 | 0.16 | 1.00 | ||||
Cr | −0.04 | 0.03 | −0.18 | 0.43 | 0.03 | 0.50 | 0.33 | 1.00 | |||
Zn | −0.07 | 0.00 | 0.07 | 0.69 | 0.16 | 0.42 | 0.38 | 0.34 | 1.00 | ||
Mn | −0.48 | 0.17 | −0.25 | −0.05 | 0.01 | 0.35 | −0.14 | 0.33 | 0.04 | 1.00 | |
Fe | −0.24 | 0.21 | −0.13 | 0.32 | 0.12 | 0.61 | 0.00 | 0.55 | 0.39 | 0.66 | 1.00 |
Fe | Mn | Zn | Cu | Cr | Pb | Ni | Cd | Location | Reference |
---|---|---|---|---|---|---|---|---|---|
Residential Areas (urban and rural) | |||||||||
NA | 512.2 | 274.6 | 41.6 | 56.1 | 44.2 | 34.7 | 0.34 | Shanghai, China | [32] |
NA | 92–599 | 10–88 | 4–20 | 18–29 | 16–144 | 7–20 | 0.06–0.59 | Melbourne, Australia | [33] |
NA | 741 | NA | 21.0 | 36 | 17 | NA | 0.54 | Toronto, Canada | [34] |
NA | NA | 142 | 52.3 | 70.9 | 104 | 40.3 | 0.31 | Siena, Italy | [35] |
Forestal Areas | |||||||||
NA | NA | NA | 1.32–11.25 | NA | 7.88–54.27 | NA | 0.096–1.19 | Vilnius-Klaipėda highway, Lithuania | [36] |
NA | 470 | 133 | 39.9 | 39.0 | 76.3 | 24 | 0.477 | Hangzhou, China | [45] |
NA | NA | 71.4 | 16.8 | NA | 39.1 | 28.6 | 0.123 | Liaoning Province, China | [38] |
NA | NA | 52.56 | 18.82 | 86.80 | 25.68 | 25.96 | 0.44 | Yunnan Province, China | [39] |
Agricultural Areas | |||||||||
NA | 83–1122 | 10.5–1547 | NA | 3.7–75.3 | 7.1–50.1 | 2–27 | NA | Poland | [40] |
NA | NA | 13.1–152.9 | 1.5–226.2 | NA | 6.6–101.3 | NA | 0.1–1.54 | Poland | [41] |
NA | NA | 78.2 | 20.2 | NA | 40 | 29.8 | 0.136 | Liaoning Province, China | [38] |
NA | NA | 11.4–489 | 7.4–146 | 2.4–50.5 | 6.1–66.1 | 2.83–113 | 0.06–2.08 | Thailand | [42] |
Elements | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
Fe | 0.83 | 0.26 | 0.06 |
Mn | 0.87 | −0.21 | −0.02 |
Zn | 0.21 | 0.71 | −0.26 |
Cu | 0.11 | 0.70 | −0.27 |
Cr | 0.24 | 0.57 | 0.36 |
Pb | −0.20 | 0.76 | −0.01 |
Ni | 0.73 | 0.35 | 0.21 |
Cd | 0.09 | 0.19 | −0.64 |
pH | 0.26 | −0.11 | 0.53 |
MO | −0.28 | 0.09 | −0.51 |
traffic | −0.42 | 0.36 | 0.71 |
Variance [%] | 24 | 19 | 16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skorbiłowicz, M.; Skorbiłowicz, E.; Rogowska, W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals 2021, 11, 1290. https://doi.org/10.3390/min11111290
Skorbiłowicz M, Skorbiłowicz E, Rogowska W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals. 2021; 11(11):1290. https://doi.org/10.3390/min11111290
Chicago/Turabian StyleSkorbiłowicz, Mirosław, Elżbieta Skorbiłowicz, and Weronika Rogowska. 2021. "Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland" Minerals 11, no. 11: 1290. https://doi.org/10.3390/min11111290
APA StyleSkorbiłowicz, M., Skorbiłowicz, E., & Rogowska, W. (2021). Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals, 11(11), 1290. https://doi.org/10.3390/min11111290