Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Outdoor Dust—Main Potential Contributions
3.2. Rooftop and Ambient PM10 Dust Characterization
3.3. CO2, CO and TVOCs
3.4. Environmental Impact and Human Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kotsyfakis, M.; Zarogiannis, S.G.; Patelarou, E. The health impact of Saharan dust exposure. Int. J. Occup. Med. Environ. Health 2019, 32, 749–760. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, I.; Diaz-Hernandez, J.L.; Mangas, J.; Alonso, I.; Sanchez-Soto, P.J. Airborne dust accumulation and soil development in the North-East sector of Gran Canaria (Canary Islands, Spain). J. Arid Environ. 2007, 71, 57–81. [Google Scholar] [CrossRef] [Green Version]
- Middleton, N.J. Desert dust hazards: A global review. Aeolian Res. 2017, 24, 53–63. [Google Scholar] [CrossRef]
- Pio, C.A.; Cardoso, J.G.; Cerqueira, M.A.; Calvo, A.; Nunes, T.V.; Alves, C.A.; Custódio, D.; Almeida, S.M.; Almeida-Silva, M. Seasonal variability of aerosol concentration and size distribution in Cape Verde using a continuous aerosol optical spectrometer. Front. Environ. Sci. 2014, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- WHO, World Health Organization. Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide-Global Update 2005, Summary of Risk Assessment; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Carlsen, H.K.; Ilyinskaya, E.; Baxter, P.J.; Schmidt, A.; Thorsteinsson, T.; Pfeffer, M.A.; Barsotti, S.; Dominici, F.; Finnbjornsdottir, R.G.; Jóhannsson, T.; et al. Increased respiratory morbidity associated with exposure to a mature volcanic plume from a large Icelandic fissure eruption. Nat. Commun. 2021, 12, 2161. [Google Scholar] [CrossRef]
- Tiwari, A.; Singh, S.; Soni, V.K.; Kumar, R.R. Environmental Impact of Recent Volcanic Eruption from Mt. Mayon Over 1 South-East Asia. J. Geogr. Nat. Disast. 2021, 10, 4. [Google Scholar]
- Wilson, T.; Cole, J.; Cronin, S.; Stewart, C.; Johnston, D. Impacts on agriculture following the 1991 eruption of Vulcan Hudson, Patagonia: Lessons for recovery. Nat. Hazards 2011, 57, 185–212. [Google Scholar] [CrossRef]
- Horwell, C.; Baxter, P.J. The respiratory health hazards of volcanic ash: A review for volcanic risk mitigation. Bull. Volcanol. 2006, 69, 1–24. [Google Scholar] [CrossRef]
- Gudmundsson, G. Respiratory health effects of volcanic ash with special reference to Iceland. A review. Clin. Resp. J. 2010, 231, 9. [Google Scholar] [CrossRef]
- Knippertz, P.; Stuut, J.-B. Mineral Dust, a Key Player in the Earth System, 1st ed.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar] [CrossRef]
- Daga, R.; Guevara, S.; Poire, D.; Arribére, M. Characterization of tephras dispersed by the recent eruptions of volcanoes Calbuco (1961), Chaitén (2008) and Cordón Caulle Complex (1960 and 2011), in Northern Patagonia. J. S. Am. Earth Sci. 2014, 49, 1–14. [Google Scholar] [CrossRef]
- Horwell, C.; Fenoglio, I.; Ragnarsdottir, K.V.; Sparks, R.S.; Fubini, B. Surface reactivity of volcanic ash from the eruption of Soufrière Hills volcano, Montserrat, West Indies with implications for health hazards. Environ. Res. 2003, 93, 202–215. [Google Scholar] [CrossRef]
- IARC, International Agency for Research on Cancer. Monographs. Available online: https://monographs.iarc.who.int/ (accessed on 15 July 2021).
- Smeester, L.; Fry, R.C. Long-Term Health Effects and Underlying Biological Mechanisms of Developmental Exposure to Arsenic. Curr. Environ. Health Rep. 2018, 5, 134–144. [Google Scholar] [CrossRef]
- Fomba, K.; Müller, K.; van Pinxteren, D.; Poulain, L.; van Pinxteren, M.; Herrmann, H. Long-term chemical characterization of tropical and marine aerosols at the Cape Verde Atmospheric Observatory (CVAO) from 2007 to 2011. Atmos. Chem. Phys. 2014, 14, 8883–8904. [Google Scholar] [CrossRef] [Green Version]
- Nriagu, J. Toxic metal pollution in Africa. J. Sci. Total Environ. 1992, 121, 1–37. [Google Scholar] [CrossRef]
- Grobeéty, B.; Giereé, R.; Dietze, V.; Stille, P. Airborne Particles in the Urban Environment. Elements 2010, 6, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Gama, C.; Tchepel, O.; Baldasano, J.M.; Basart, S.; Ferreira, J.; Pio, C.; Cardoso, J.; Borrego, C. Seasonal patterns of Saharan dust over Cape Verde–A combined approach using observations and modelling. Tellus B Chem. Phys. Meteorol. 2015, 67, 24410. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, P.; Cook, A. Volcanic emissions and health. In Medical Geology: Effects of Geological Environments on Human Health-Developments in Earth and Environmental Sciences Series; Komatina, M.M., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 203–226. [Google Scholar]
- Gayle, A.; Quint, J.; Fuertes, E. Understanding the relationships between environmental factors and exacerbations of COPD. Expert Rev. Respir. Med. 2021, 15, 39–50. [Google Scholar] [CrossRef]
- Karanasiou, A.; Moreno, N.; Moreno, T.; Viana, M.; Leeuw, F.; Querol, X. Health effects from Sahara dust episodes in Europe: Literature review and research gaps. Environ. Int. 2012, 47, 107–114. [Google Scholar] [CrossRef]
- Dumont, S.; Silveira, G.; Custódio, S.; Lopes, F.; Mouël, J.; Gouhier, M.; Guéhenneux, Y. Response of Fogo volcano (Cape Verde) to lunisolar gravitational forces during the 2014–2015 eruption. Phys. Earth Planet Int. 2021, 312, 106659. [Google Scholar] [CrossRef]
- Larrue, S.; Paris, R.; Etienne, S. The use of vascular plant densities to estimate the age of undated lava flows in semi-arid areas of Fogo Island (Cape Verde, Atlantic Ocean). J. Arid Environ. 2020, 173, 104042. [Google Scholar] [CrossRef]
- Barrett, R.; Lebas, E.; Ramalho, R.; Klaucke, I.; Kutterolf, S.; Klügel, A.; Lindhorst, K.; Gross, F.; Krastel, S. Revisiting the tsunamigenic volcanic flank collapse of Fogo Island in the Cape Verdes, offshore West Africa. Geol. Soc. Lond. 2020, 500, 13–26. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.; Alfama, V.; Cardoso, N. The Volcanic Eruption of 2014/15 on Fogo Island Cape Vert and the main effects. Repocs 2016, 13, 49–61. (In Portuguese) [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Zhang, X.; Zhang, C.; Xu, T. Mineralogical and morphological properties of individual dust particles in ice cores from the Tibetan Plateau. J. Glaciol. 2016, 62, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Bessagnet, B.; Khvorostyanov, D.; Beekmann, M.; Blond, N.; Colette, A.; Coll, I.; Curci, G.; Foret, G.; Hodzic, A.; et al. CHIMERE: A model for regional atmospheric composition modelling. Geosc. Model. Dev. 2013, 6, 981–1028. [Google Scholar] [CrossRef] [Green Version]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR 2008, 113. [Google Scholar] [CrossRef]
- Schmechtig, C.; Marticorena, B.; Chatenet, B.; Bergametti, G.; Rajot, J.L.; Coman, A. Simulation of the mineral dust content over Western Africa from the event to the annual scale with the CHIMERE-DUST model. Atmos. Chem. Phys. 2011, 11, 7185–7207. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Chin, M.; Tegen, I.; Prospero, J.; Holben, B.; Dubovik, O.; Lin, S.-J. Sources and distributions of dust aerosols simulated with the GOCART model. J. Geophys. Res. 2001, 106, 20255–20274. [Google Scholar] [CrossRef]
- Nishida, H.; Miyai, M.; Tada, F.; Suzuki, S. Computation of the index of pollution caused by heavy metals in river sediment. Environ. Pollut. 1982, 4, 241–248. [Google Scholar] [CrossRef]
- Hakanson, L. Ecological risk index for aquatic pollution control, a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Tomlinson, D.L.; Wilson, J.G.; Harris, C.R.; Jeffrey, D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgol. Meeresunters. 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Muller, G. Schwermetalle in den sediment des Rheins, Veranderungem Seit. Umschau 1979, 79, 778–783. [Google Scholar]
- Yesilkanat, C.; Kobya, Y. Spatial characteristics of ecological and health risks of toxic heavy metal pollution from road dust in the Black Sea coast of Turkey. Geoderma Reg. 2021, 25, e00388. [Google Scholar] [CrossRef]
- Bowen, H.J.M. Trace Elements in Biochemistry; Academic Press: London, UK, 1966. [Google Scholar]
- RAIS, The Risk Assessment Information System. Available online: https://rais.ornl.gov/ (accessed on 5 June 2021).
- Mata, J.; Martins, S.; Mattielli, N.; Madeira, J.; Faria, B.; Ramalho, R.S.; Silva, P.; Moreira, M.; Caldeira, R.; Moreira, M.; et al. The 2014–2015 eruption and the short-term geochemical evolution of the Fogo volcano (Cape Verde): Evidence for small-scale mantle heterogeneity. Lithos 2017, 288–289, 91–107. [Google Scholar] [CrossRef]
- Le Bas, M.J.; Le Maitre, R.W.; Woolley, A.R. The Construction of the Total Alkali-Silica Chemical Classification of Volcanic Rocks. J. Petrol. 1986, 27, 745–750. [Google Scholar] [CrossRef]
- Escrig, S.; Doucelance, R.; Moreira, M.; Allegre, C. Os isotope systematics in Fogo Island: Evidence for lower continental crust fragments under the Cape Verde Southern Islands. Chem. Geol. 2005, 219, 93–113. [Google Scholar] [CrossRef]
- Nicolás, J.; Chiari, M.; Crespo, J.; Garcia Orellana, I.; Lucarelli, F.; Nava, S.; Pastor, C.; Yubero, E. Quantification of Saharan and local dust impact in an arid Mediterranean area by the positive matrix factorization (PMF) technique. Atm. Environ. 2008, 42, 8872–8882. [Google Scholar] [CrossRef]
- Cai, Y.; Li, F.; Zhang, J.; Zhu, X.; Li, Y.; Fu, J.; Chen XLiu, C. Toxic metals in size-fractionated road dust from typical industrial district: Seasonal distribution, bioaccessibility and stochastic-fuzzy health risk management. Environ. Technol. Innov. 2021, 23, 101643. [Google Scholar] [CrossRef]
- Liu, G.; Wang, J.; Liu, X.; Liu, X.; Li, X.; Ren, Y.; Wang, J.; Dong, L. Partitioning and geochemical fractions of heavy metals from geogenic and anthropogenic sources in various soil particle size fractions. Geoderma 2018, 312, 104–113. [Google Scholar] [CrossRef]
- Jeong, G.; Park, M.; Kandler, K.; Nousiainen, T.; Kemppinen, O. Mineralogical properties and internal structures of individual fine particles of Saharan dust. Atmos. Chem. Phys. 2016, 16, 12397–12410. [Google Scholar] [CrossRef] [Green Version]
- Scheuvens, D.; Schütz, L.; Kandler, K.; Ebert, M.; Weinbruch, S. Bulk composition of northern African dust and its source sediments-A compilation. Earth Sci. Rev. 2013, 116, 170–194. [Google Scholar] [CrossRef]
- Butwin, M.K.; Pfeffer, M.A.; von Löwis, S.; Støren, E.W.N.; Bali, E.; Thorsteinsson, T. Properties of dust source material and volcanic ash in Iceland. Sedimentology 2020, 67, 3067–3087. [Google Scholar] [CrossRef]
- Reich, M.; Zúñiga Al Amigo, A.; Vargas, G.; Morata, D.; Palacios, C.; Parada, M.; Garreaud, R. Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology 2009, 37, 435–438. [Google Scholar] [CrossRef]
- Lavalle-Carrasco, J.; Molina-Frechero, N.; Nevárez-Rascón, M.; Sánchez-Pérez, L.; Hamdan-Partida, A.; González-González, R.; Cassi, D.; Isiordia-Espinoza, M.; Bologna-Molina, R. Recent biomarkers for monitoring the systemic fluoride levels in exposed populations: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 317. [Google Scholar] [CrossRef]
- Falcone, E.; Federico, C.; Bellomo, S.; Brusca, L.; D’Alessandro, W.; Longo, M.; Calabrese, S. Impact of acidic volcanic emissions on ash leaching and, on the bioavailability, and mobility of trace metals in soils of Mt. Etna. Ital. J. Geosci. 2021, 140, 57–78. [Google Scholar] [CrossRef]
- Kabir, H.; Gupta, A.; Tripathy, S. Fluoride and human health: Systematic appraisal of sources, exposures, metabolism, and toxicity. Crit. Rev. Environ. Sci. Technol. 2020, 50, 1116–1193. [Google Scholar] [CrossRef]
- Johnston, N.; Strobel, S. Principles of fluoride toxicity and the cellular response: A review. Arch. Toxicol. 2020, 94, 1051–1069. [Google Scholar] [CrossRef]
- Mueller, S.; Ayris, P.; Wadsworth, F.; Kueppers, U.; Casas, A.; Delmelle, P.; Taddeucci, J.; Jacob, M.; Dingwell, D. Ash aggregation enhanced by deposition and redistribution of salt on the surface of volcanic ash in eruption plumes. Sci. Rep. 2017, 7, 45762. [Google Scholar] [CrossRef]
- Ruby, M.V.; Lowney, Y.W. Selective soil particle adherence to hands: Implications for understanding oral exposure to soil contaminants. Environ. Sci. Technol. 2012, 46, 12759–12771. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Wang, L.; Li, L.; Lei, K.; Huang, L.; Kang, D. Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J. Hazard. Mater. 2010, 173, 744–749. [Google Scholar] [CrossRef]
- Gunawardana, C.; Goonetilleke, A.; Egodawatta, P.; Dawes, L.; Kokot, S. Source characterisation of road dust based on chemical and mineralogical composition. Chemosphere 2012, 87, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Fiala, M.; Hwang, H.M. Influence of highway pavement on metals in road dust: A case study in Houston, Texas. Water Air Soil Pollut. 2021, 232, 185. [Google Scholar] [CrossRef]
- Breuning-Madsen, H.; Awadzi, T.W. Harmattan dust deposition and particle size in Ghana. Catena 2005, 63, 23–38. [Google Scholar] [CrossRef]
- Ryder, C.; Highwood, E.; Walser, A.; Seibert, P.; Philipp, A.; Weinzier, B. Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara. Atmos. Chem. Phys. 2019, 19, 15353–15376. [Google Scholar] [CrossRef] [Green Version]
- HEI, Health Effects Institute. State of Global Air 2020. Available online: https://www.stateofglobalair.org/ (accessed on 20 July 2021).
- Sprigg, W.A.; Nickovic, S.; Galgiani, J.N.; Pejanovic, G.; Petkovic, S.; Vujadinovic, M.; Vukovic, A.; Dacic, M.; DiBiase, S.; Prasad, A.; et al. Regional dust storm modeling for health services: The case of valley fever. Aeolian Res. 2014, 14, 53–73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Gao, B.; Zhou, Z.; Chang, Y. The movement and deposition of PM2.5 in the upper respiratory tract for the patients with heart failure: An elementary CFD study. Biomed. Eng. Online 2016, 15, 138. [Google Scholar] [CrossRef] [Green Version]
- Xing, Y.-F.; Xu, Y.-H.; Shi, M.-H.; Lian, Y.-X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [CrossRef]
- Grimsrud, D.T. Project Summary Report to the Legislative Commission on Minnesota Resources (LCMR) Part III: Literature Review of IAQ Impacts on School Children. Continuous Indoor Quality (IAQ) Monitoring in Minnesota Schools. Proj. Results 2004, 2, 2004. [Google Scholar]
- Varshney, C.K.; Padhy, P.H. Total volatile organic compounds in the urban environment of Delhi. J. Air Waste Manag. Assoc. 1998, 48, 448–453. [Google Scholar] [CrossRef] [Green Version]
- Fujita, E.; Campbell, D.; Zielinska, B.; Arnott, W.; Chow, J. Concentrations of Air Toxics in Motor Vehicle–Dominated Environments. Res. Rep. Health Eff. Inst. 2011, 156, 3–77. [Google Scholar]
- Alves, C.A.; Candeias, C.; Nunes, T.V.; Tomé, M.J.C.; Vicente, E.D.; Avila, P.F.; Rocha, F. Passive monitoring of particulate matter and gaseous pollutants in Fogo Island, Cape Verde. Atmos. Res. 2018, 214, 250–262. [Google Scholar] [CrossRef]
- Tassi, F.; Capecchiacci, F.; Cabassi, J.; Calabrese, S.; Vaselli, O.; Rouwet, D.; Pecoraino, G.; Chiodini, G. Geogenic and atmospheric sources for volatile organic compounds in fumarole emissions from Mt. Etna and Volcano Island (Sicily, Italy). J. Geophys. Res. 2012, 117, D17305. [Google Scholar] [CrossRef] [Green Version]
- Briber, B.; Hutyra, L.; Dunn, A.; Raciti, S.; Munger, J. Variations in atmospheric CO2 mixing ratios across a Boston, MA urban to rural gradient. Land 2013, 2, 304–327. [Google Scholar] [CrossRef] [Green Version]
- Widory, D.; Javoy, M. The carbon isotope composition of atmospheric CO2 in Paris. Earth Planet Sci. Lett. 2003, 215, 289–298. [Google Scholar] [CrossRef]
- Andersson, S.M.; Martinsson, B.G.; Friberg, J.; Brenninkmeijer, C.; Rauthe-Schöch, A.; Hermann, M.; van Velthoven, P.; Zahn, A. Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations. Atmos. Chem. Phys. 2013, 13, 1781–1796. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Noller, B.; Huynh, T.; Ng, J.; Taga, R.; Diacomanolis, V.; Harris, H. How the population in Mount Isa is living with lead exposure from mining activities. Extract. Ind. Soc. 2021, 8, 123–134. [Google Scholar] [CrossRef]
- Takeda, A. Manganese action in brain function. Brain Res. Rev. 2003, 41, 79–87. [Google Scholar] [CrossRef]
Dust Fractions | HQChildIng | HIChildTotal | RiskAsIng | RiskAsTotal | RiskTotalIng | RiskTotal | |
---|---|---|---|---|---|---|---|
<63 µm | mean | 1.4 | 1.4 | 6.34E−06 | 7.24E−06 | 6.63E−06 | 7.61E−06 |
min | 1.3 | 1.3 | 6.34E−06 | 7.24E−06 | 6.58E−06 | 7.56E−06 | |
max | 1.5 | 1.5 | 6.34E−06 | 7.24E−06 | 6.67E−06 | 7.65E−06 | |
63–125 µm | mean | 1.4 | 1.4 | 2.11E−06 | 2.41E−06 | 2.29E−06 | 2.68E−06 |
min | 1.3 | 1.3 | 1.62E−06 | 1.85E−06 | 1.72E−06 | 2.02E−06 | |
max | 1.6 | 1.7 | 5.57E−06 | 6.35E−06 | 6.04E−06 | 6.92E−06 | |
125–250 µm | mean | 1.4 | 1.4 | 1.97E−06 | 2.25E−06 | 2.05E−06 | 2.45E−06 |
min | 1.2 | 1.3 | 1.62E−06 | 1.85E−06 | 1.65E−06 | 2.00E−06 | |
max | 1.5 | 1.5 | 4.40E−06 | 5.02E−06 | 4.58E−06 | 5.34E−06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Candeias, C.; Ávila, P.F.; Alves, C.; Gama, C.; Sequeira, C.; da Silva, E.F.; Rocha, F. Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde). Minerals 2021, 11, 1275. https://doi.org/10.3390/min11111275
Candeias C, Ávila PF, Alves C, Gama C, Sequeira C, da Silva EF, Rocha F. Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde). Minerals. 2021; 11(11):1275. https://doi.org/10.3390/min11111275
Chicago/Turabian StyleCandeias, Carla, Paula Freire Ávila, Célia Alves, Carla Gama, Cristina Sequeira, Eduardo Ferreira da Silva, and Fernando Rocha. 2021. "Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde)" Minerals 11, no. 11: 1275. https://doi.org/10.3390/min11111275
APA StyleCandeias, C., Ávila, P. F., Alves, C., Gama, C., Sequeira, C., da Silva, E. F., & Rocha, F. (2021). Dust Characterization and Its Potential Impact during the 2014–2015 Fogo Volcano Eruption (Cape Verde). Minerals, 11(11), 1275. https://doi.org/10.3390/min11111275