Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids
Abstract
:1. Introduction
2. Data Sources
3. Geological Characteristics of Ailaoshan Gold Deposits
3.1. The Jinchang Deposit in Mojiang
3.2. The Zhenyuan Deposit
3.3. The Daping Deposit in Yuanyang
3.4. The Chang’an Deposit in Jinping
3.5. Host-Rock Alteration and Mineralization Stages
3.5.1. Characteristics of Host-Rock Alteration
3.5.2. Mineralization Periods and Stages Division
4. Metallogenic Geodynamic Background
5. Genesis Mechanism of Ore Deposits
5.1. Fluid Inclusion
5.2. H-O Isotopes
5.3. C Isotopes
5.4. Pb Isotopes
5.5. S Isotopes
6. Regional Metallogenic Model
7. Conclusions
- (1)
- The geological characteristic analysis of the four main gold deposits in the Ailaoshan metallogenic belt showed that the area has a strong tectonic-magmatic activity, forming a series of ultrabasic, basic, and intermediate-acid magmatic rocks. The hydrothermal effect is strong, the alteration products are developed, and the spatial zoning of alteration types is not obvious. Gold mineralization is closely related to silicification, argillation, carbonation, and pyrite mineralization.
- (2)
- Based on the existing radiometric age data characteristics in the Ailaoshan metallogenic belt, this paper proposes that the metallogenic-thermal events experienced by the Ailaoshan metallogenic belt can be divided into early (65–60 Ma), major (40–30 Ma), and late (30–25 Ma) phases. The gold mineralization mostly occurred between 30 and 50 Ma, belonging to the early Himalayan period.
- (3)
- Research on the composition of ore-forming fluid inclusions and the physicochemical properties of ore-forming reveals that the ore-forming fluid in the Ailaoshan metallogenic belt exhibits the characteristics of medium-low temperatures (150–300 °C) and medium-low salinity (an average of around 7 wt% NaCl). The cations in the fluid are mostly Na+ and K+, the anions are Cl− and SO42−, and the gas phase composition mostly comprises CO2; furthermore, the content is between 1% and 37%, representative of a H2O-NaCl-CO2 (-ΣS) system. The fluid is in a neutral, weakly alkaline, and relatively reductive state. Different deposits also exhibit certain differences, mostly reflected in the mineralization temperatures, pressures, depths, and CO2 content. From Yuanyang Daping → Zhenyuan Laowangzhai → Mojiang Jinchang → Jinping Changan, there is a decreasing trend.
- (4)
- The joint study of C-H-O-S-Pb isotopes shows that regional ore-forming fluids mostly comprise mantle (magmatic water) and metamorphic fluids (metamorphic water) and the metamorphic fluids are mostly in the middle and lower crust. Deposits with relatively shallow ore-forming depths might be mixed with meteoric water. The ore-forming materials exhibit the characteristics of multiple sources. Both the upper crust and the middle-lower crust are involved, and the mixing of mantle-derived materials also occurs. Some shallow host rocks provide numerous ore-forming materials.
- (5)
- Based on the analysis of the geological characteristics, metallogenic geodynamic background, and genetic mechanism of the gold deposits in the Ailaoshan metallogenic belt, the regional metallogenic model was established by referring to the continuous metallogenic mechanism of the crust combined with the metallogenic characteristics of the Ailaoshan metallogenic belt.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, W.C.; Zhang, J.X.; Liu, L.C.; Tang, Y.K.; Liu, X.J. An prospective analysis of ore-searching work in the Bijiashan gold deposit in Dali-Midu area, Yunnan Province. Acta Geosci. Sin. 2013, 34, 108–114. [Google Scholar]
- Liu, J.L.; Tang, Y.; Song, Z.J.; Tran, M.D.; Zhai, Y.F.; Wu, W.B.; Chen, W. The Ailaoshan Belt in Western Yunnan: Tectonic framework and tectonic evolution. J. Jilin Univ. 2011, 41, 1285–1303. [Google Scholar]
- Metcalfe, I. Tectonic framework and Phanerozoic evolution of Sundaland. Gondwana Res. 2011, 19, 3–21. [Google Scholar] [CrossRef]
- Wang, Q.F.; Groves, D.I.; Deng, J.; Li, H.J.; Yang, L.; Dong, C.Y. Evolution of the Miocene Ailaoshan orogenic gold deposits, southeastern Tibet, during a complex tectonic history of lithosphere-crust interaction. Miner. Depos. 2020, 55, 1085–1104. [Google Scholar] [CrossRef]
- Wang, Q.F.; Zhao, H.S.; Groves, D.I.; Deng, J.; Zhang, Q.W.; Xue, S.C. The Jurassic Danba hypozonal orogenic gold deposit, western China: Indirect derivation from fertile mantle lithosphere metasomatized during Neoproterozoic subduction. Miner. Depos. 2020, 55, 309–324. [Google Scholar] [CrossRef]
- Schärer, U.; Tapponnier, P.; Lacassin, R.; Leloup, P.H.; Zhong, D.; Ji, S. Intraplate tectonics in Asia: A precise age for large-scale Miocene movement along the Ailao Shan-Red River shear zone, China. Earth Planet. Sci. Lett. 1990, 97, 65–77. [Google Scholar] [CrossRef]
- Leloup, P.H.; Lacassin, R.; Tapponnier, P.; Schrer, U.; Zhong, D.L.; Liu, X.H.; Zhang, L.S.; Ji, S.C.; Trinh, P.T. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics 1995, 251, 3–84. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Cook, N.J. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue. Ore Geol. Rev. 2009, 36, 2–242. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Duan, L.F.; Lu, Y.J.; Zheng, Y.C.; Zhu, D.C.; Yang, Z.M.; Yang, Z.S.; Wang, B.D.; Pei, Y.R.; Zhao, Z.D.; et al. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Econ. Geol. 2015, 110, 1541–1575. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Kinny, P.D.; Wang, J. The breakup of Rodinia: Did it start with a mantle plume beneath South China? Earth Planet. Sci. Lett. 1999, 173, 171–181. [Google Scholar] [CrossRef]
- Li, X.H.; Li, W.X.; Li, Z.X.; Ying, L. 850–790 Ma bimodal volcanic and intrusive rocks in northern Zhejiang, South China: A major episode of continental rift magmatism during the breakup of Rodinia. Lithos 2008, 102, 341–357. [Google Scholar] [CrossRef]
- Li, X.H.; Li, Z.X.; Zhou, H.; Liu, Y.; Kinny, P.D. U-Pb zircon geochronology, geochemistry and Nd isotopic study of Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China: Implications for the initial rifting of Rodinia. Precambrian Res. 2002, 113, 135–154. [Google Scholar] [CrossRef]
- Zou, H.; Bagas, L.; Li, X.Y.; Liu, H.; Jiang, X.W.; Li, Y. Origin and evolution of the Neoproterozoic Dengganping Granitic Complex in the western margin of the Yangtze Block, SW China: Implications for breakup of Rodina Supercontinent. Lithos 2020, 370–371, 105602. [Google Scholar] [CrossRef]
- Liu, H.C.; Wang, Y.J.; Fan, W.M.; Zi, J.W.; Cai, Y.F.; Yang, G.L. Petrogenesis and tectonic implications of Late-Triassic high εNd(t)-εHf(t) granites in the Ailaoshan tectonic zone (SW China). Sci. China Earth Sci. 2014, 57, 2181–2194. [Google Scholar] [CrossRef]
- Liu, H.C.; Wang, Y.J.; Cawood, P.A.; Fan, W.M.; Cai, Y.F.; Xing, X.W. Record of Tethyan ocean closure and Indosinian collision along the Ailaoshan suture zone (SW China). Gondwana Res. 2015, 27, 1292–1306. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Wang, Q.F.; Wang, Y.N.; Li, G.J. Proto- to Paleo-Tethyan evolution of the eastern margin of Simao block. Gondwana Res. 2018, 62, 61–74. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Santosh, M. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci. Rev. 2014, 138, 268–299. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Li, C.S.; Wang, C.M. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 2014, 26, 419–437. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J. Tectonic evolution, superimposed orogeny, and composite metallogenic system in China. Gondwana Res. 2017, 50, 216–266. [Google Scholar] [CrossRef]
- Li, P. Ore-Forming Fluids Evolution of the Laowangzhai Gold Deposit, Western Yunnan. Master Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese with English abstract). [Google Scholar]
- Sun, X.M.; Zhang, Y.; Xiong, D.X.; Sun, W.D.; Shi, G.Y.; Zhai, W.; Wang, S.W. Crust and mantle contributions to gold-forming process at the Daping deposit, Ailaoshan gold belt, Yunnan, China. Ore Geol. Rev. 2009, 36, 235–249. [Google Scholar] [CrossRef]
- Zhao, K. Geochemistry of Ore-Forming Processes in the Ailaoshan Orogenic Gold Belt, Yunnan. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese with English abstract). [Google Scholar]
- Yang, L.Q.; Deng, J.; Zhao, K.; Liu, J.T. Tectono-thermochronology and gold mineralization events of orogenic gold deposits in Ailaoshan orogenic belt, Southwest China: Geochronological constraints. Acta Petrol. Sin. 2011, 27, 2519–2532, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Hou, Z.Q.; Mo, X.X.; Yang, L.Q.; Wang, Q.F.; Wang, C.M. Superimposed orogenesis and metallogenesis in Sanjiang Tethys. Miner. Depos. 2010, 29, 37–42, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Yang, L.Q.; Ge, L.S.; Yuan, S.S.; Wang, Q.F.; Zhang, J.; Gong, Q.J.; Wang, C.M. Character and post-ore changes, modifications and preservation of Cenozoic alkali-rich porphyry gold metallogenic system in western Yunnan, China. Acta Petrol. Sin. 2010, 26, 1633–1645, (In Chinese with English abstract). [Google Scholar]
- Tapponnier, P.; Lacassin, R.; Leloup, P.H.; Schärer, U.; Zhong, D.L.; Wu, H.W.; Liu, X.H.; Ji, S.C.; Zhang, L.S.; Zhong, J.Y. The Ailao Shan/Red River metamorphic belt: Tertiary left–lateral shear between Indochina and South China. Nature 1990, 343, 431–437. [Google Scholar] [CrossRef]
- Goldfarb, R.J.; Groves, D.I.; Gardoll, S. Orogenic gold and geologic time: A global synthesis. Ore Geol. Rev. 2001, 18, 1–75. [Google Scholar] [CrossRef]
- Faure, M.; Lin, W.; Yang, C.; Lepvrier, C. Triassic tectonics of the Ailaoshan Belt (SW China): Early Triassic collision between the South China and Indochina blocks, and Middle Triassic intracontinental shearing. Tectonophysics 2016, 683, 27–42. [Google Scholar] [CrossRef]
- Bozzo, A.T.; Chen, H.-S.; Kass, J.R.; Barduhn, A.J. The properties of the hydrates of chlorine and carbon dioxide. Desalination 1975, 16, 303–320. [Google Scholar] [CrossRef]
- Lu, H.Z.; Fan, H.R.; Ni, P. The Fluild Inclusion; Science Publishing House: Beijing, China, 2004; pp. 1–488. (In Chinese) [Google Scholar]
- Fang, W.X.; Hu, R.Z.; Xie, G.Q.; Su, W.C.; Qi, L. Diagenetic-metallogenic ages of pyritic cherts and their implications in Mojiang nickel-gold deposit in Yunnan Province. Chin. Sci. Bull. 2001, 46, 1823–1827. [Google Scholar] [CrossRef]
- Xiong, Y.Q.; Yang, L.Q.; Shao, Y.J.; Zhao, K.; Li, P.; Lu, Y.G.; Du, D.Y. Metallogenic process in Jinchang gold-nickel deposit, Mojiang County, SW Yunnan, China: Constraints from occurrence of gold and nickel. Acta Petrol. Sin. 2015, 31, 3309–3330, (In Chinese with English abstract). [Google Scholar]
- Ying, H.L.; Wang, D.H.; Liu, H.L. Geology and formation time of nickel mineralization in Jinchang nickel-gold deposit, Mojiang, Yunnan. Miner. Depos. 2005, 24, 44–51, (In Chinese with English abstract). [Google Scholar]
- BGMRYP (Bureau of Geology and Mineral Resources of Yunnan Province). Exploration Report of the Donggualin Ore Body Cluster, Zhenyuan Deposit; BGMRYP: Yunnan, China, 1993. (In Chinese) [Google Scholar]
- BGMRYP (Bureau of Geology and Mineral Resources of Yunnan Province). Exploration Report of the Laowangzhai Orebody Cluster, Zhenyuan Deposit; BGMRYP: Yunnan, China, 1993. (In Chinese) [Google Scholar]
- Yang, L.Q.; Liu, J.T.; Zhang, C.; Wang, Q.F.; Ge, L.S.; Wang, Z.L.; Zhang, J.; Gong, Q.J. Superimposed orogenesis and metallogenesis: An example from the orogenic gold deposits in Ailaoshan gold belt, Southwest China. Acta Petrol. Sin. 2010, 26, 1723–1739, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Wang, Q.F.; Li, G.J.; Zhao, Y. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit, SW China. Ore Geol. Rev. 2015, 65, 42–54. [Google Scholar] [CrossRef]
- Huang, Z.L.; Liu, C.Q.; Yang, H.L.; Xu, C.; Han, R.S.; Xiao, H.Y.; Zhang, B.; Li, W.B. Geochemistry of lamprophyres in Laowangzhai gold deposits, Yunnan Province, China: Implication for its characteristics of source region. Geochem. J. 2002, 39, 91–112. [Google Scholar]
- Yang, L. Tectonic Evolution and Gold Mineralization in the Southwest Tethyan Ailaoshan Belt. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2018. (In Chinese with English abstract). [Google Scholar]
- Chen, Y.H.; Yao, S.Z.; Pan, Y.M. Geochemistry of lamprophyres at the Daping gold deposit, Yunnan province, China: Constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau. J. Asian Earth Sci. 2014, 93, 129–145. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, J.; Chen, H.Y.; Yang, L.Q.; Cooke, D.; Danyushevsky, L. LA-ICP-MS trace element analysis of pyrite from the Chang’an gold deposit, Sanjiang region, China: Implication for ore-forming process. Gondwana Res. 2014, 26, 557–575. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, D.; Wu, G.G.; Di, Y.J.; Li, X.J.; Bu, X.C.; Liu, J. Origin of the Daping gold deposit in the Ailaoshan metallogenic belt, SW China: Insights from geology, isotope geochemistry and geochronology. Ore Geol. Rev. 2018, 96, 1–12. [Google Scholar] [CrossRef]
- Liang, Y.H.; Sun, X.M.; Shi, G.Y.; Hu, B.M.; Zhou, F.; Wei, H.X.; Mo, R.W. Ore-forming fluid geochemistry and genesis of Laowangzhai large scale orogenic gold deposit in Ailaoshan gold belt, Yunnan Province, China. Acta Petrol. Sin. 2011, 27, 2533–2540, (In Chinese with English abstract). [Google Scholar]
- Li, Y. Discussion on metallogenic material source of Mojiang gold deposit. Yunnan Geol. 1992, 11, 130–143, (In Chinese with English abstract). [Google Scholar]
- Fan, W.M.; Wang, Y.J.; Zhang, A.M.; Zhang, F.F.; Zhang, Y.Z. Permian arc–back-arc basin development along the Ailaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from the Mojiang volcanic rocks, Southwest China. Lithos 2010, 119, 553–568. [Google Scholar] [CrossRef]
- Qu, J.F. Evolution of Ore-Forming Fluids and Metallogenesis of the Jinchang Au Deposit in Mojiang County, Yunnan Province. Master Thesis, China University of Geosciences, Beijing, China, 2019. (In Chinese with English abstract). [Google Scholar]
- Chen, Y.H. Metallogenic Conditions and Gold Enrichment Regularity in the Daping Gold Deposit, Yunnan Province, P.R. China. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2015. (In Chinese with English abstract). [Google Scholar]
- Yang, L.; Wang, Q.F.; Large, R.R.; Mukherjee, I.; Deng, J.; Li, H.J.; Yu, H.Z.; Wang, X. Fluid source and metal precipitation mechanism of sediment-hosted Chang’an orogenic gold deposit, SW China: Constraints from sulfide texture, trace element, S, Pb, and He-Ar isotopes and calcite C–O isotopes. Am. Mineral. 2021, 106, 410–429. [Google Scholar] [CrossRef]
- Li, N.; Chen, Y.J.; Santosh, M.; Pirajno, F. Compositional polarity of Triassic granitoids in the Qinling Orogen, China: Implication for termination of the north-ernmost paleo-Tethys. Gondwana Res. 2013, 27, 244–257. [Google Scholar] [CrossRef]
- Li, S.H. The Metallogenesis of the Chang’an Gold Deposit in Southern Ailaoshan Metallogenic Belt. Master Thesis, China University of Geosciences, Beijing, China, 2012. (In Chinese with English abstract). [Google Scholar]
- Wang, D.H.; Qu, W.J.; Li, Z.W.; Yin, H.L.; Chen, Y.C. Mineralization episode of porphyry copper deposits in the Jinshajiang-Red River mineralization belt: Re-Os dating. Ser. D Earth Sci. 2005, 48, 192–198. [Google Scholar] [CrossRef]
- Wang, D.H.; Mao, J.W.; Yan, S.H.; Yang, J.M.; Xu, J.; Chen, Y.H.; Xue, C.J. Episodes of Cenozoic Gold Mineralization on the Eastern Margin of the Qinghai-Tibet Plateau: 40Ar/39Ar Dating and Implication for Geodynamic Events. Acta Geol. Sin. 2005, 79, 233–253. [Google Scholar]
- Hu, Y.Z.; Tang, S.C.; Wang, H.P. Geology of Gold Deposits in Ailaoshan; Geological Publishing House: Beijing, China, 1995; pp. 1–273. (In Chinese) [Google Scholar]
- Bi, X.W.; Hu, R.Z.; He, M.Y. Discussion on metallogenic age and metallogenic mechanism of Ailaoshan gold belt. Geochemistry 1996, 1, 94–97. (In Chinese) [Google Scholar]
- Wang, J.H.; Yin, A.; Harrison, T.M.; Grove, M.; Zhang, G.H.; Xie, Y.Q. A tectonic mode for Cenozoic igneous activities in the eastern Indo/Asian collision zone. Earth Planet. Sci. Lett. 2001, 188, 123–133. [Google Scholar] [CrossRef]
- Tang, S.C.; Li, J.D.; He, S.X. On metallogenic regularity of gold metallogenic belts in northern section of Ailao Mountain. Yunnan Geol. 1991, 10, 44–70, (In Chinese with English abstract). [Google Scholar]
- Li, G.X. Structural analysis of the Laowangzhai gold orefield Ailaoshan Mountain. In Contribution to the Geology of the Qinghai-Xizang (Tibet) Plateau; China Geological Press: Beijing, China, 1990; Volume 20, pp. 187–197, (In Chinese with English abstract). [Google Scholar]
- The Third Geological Team of Yunnan Bureau of Geology and Mineral Resources. 1993; unpublished.
- Wang, Y.; Zhang, H.R.; Zhang, H.C.; Chai, P.; Hou, Z.Q. Gold in the lithosphere of the western South China Block, SW China: Insights from quartz porphyries from the giant Zhenyuan gold deposit. Ore Geol. Rev. 2020, 119, 103312. [Google Scholar] [CrossRef]
- Tan, X.C.; You, W.D. Regionally metallogenic geological setting of major non-ferrous metal deposits in western Yunnan. Yunnan Geol. 1991, 10, 11–43, (In Chinese with English abstract). [Google Scholar]
- Yang, Z.Y.; Hu, G.Y.; Zhao, X.Y. New 40Ar/39Ar Data of Gold Mineralization in the Ailaoshan Gold Belt, Yunnan Province, China. Acta Geol. Sin. 2020, 94, 210–211. [Google Scholar] [CrossRef]
- Sun, X.M.; Xiong, D.X.; Shi, G.Y.; Wang, S.W.; Zhai, W. 40Ar/39Ar Dating of Gold Deposit Hosted in the Daping Ductile Shear Zone in the Ailaoshan Gold Belt, Yunnan Province, China. Acta Geol. Sin. 2007, 81, 88–93, (In Chinese with English abstract). [Google Scholar]
- Zhang, Y.; Sun, X.M.; Shi, G.Y.; Xiong, D.X.; Wei, Z. SHRIMP U-Pb dating of zircons from diorite batholith hosting Daping gold deposit in ailaoshan gold belt, Yunan province, China. Acta Petrol. Sin. 2011, 27, 2600–2608, (In Chinese with English abstract). [Google Scholar]
- Luo, Y.N.; Yu, R.L. Orogenic Evolution and Metallogenic Time-Space Distribution in Jinshajiang-Lancangjiang-Nujiang Region, Southwest China. Acta Geosci. Sin. 2002, 5, 417–422, (In Chinese with English abstract). [Google Scholar]
- Fu, D.M.; Xu, M.J. Geology of Xiacun AG-Polymetallic ore deposit in West Sichuan, China and Correlation with Kuroko deposits. Acta Geol. Sichuan 1996, 16, 67–72, (In Chinese with English abstract). [Google Scholar]
- Wang, Y. The Geological Characteristics and Metallogenetic Model of the Chang’an Gold Deposit in the Jinping County, Yunnan Province. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2008. (In Chinese with English abstract). [Google Scholar]
- Xu, L.L.; Bi, X.W.; Hu, R.Z.; Zhang, X.C.; Su, W.C.; Qu, W.J.; Hu, Z.C.; Tang, Y.Y. Relationships between porphyry Cu-Mo mineralization in the Jinshajiang-Red River metallogenic belt and tectonic activity: Constraints from zircon U-Pb and molybdenite Re-Os geochronology. Ore Geol. Rev. 2012, 48, 460–473. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H.; Li, S.H.; Li, T.J. Paleogene magmatism and gold metallogeny of the Jinping terrane in the Ailaoshan ore belt, Sanjiang Tethyan Orogen (SW China): Geology, deposit type and tectonic setting. Ore Geol. Rev. 2017, 91, 620–637. [Google Scholar] [CrossRef]
- Liang, H.Y.; Campbell, I.H.; Allen, C.M.; Sun, W.D.; Yu, H.X.; Xie, Y.W.; Zhang, Y.Q. The age of the potassic alkaline igneous rocks along the Ailao Shan-Red River shear zone: Implications for the onset age of left-lateral shearing. J. Geol. 2007, 115, 231–242. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Xie, Y.W. Geochronology of Ailaoshan-Jinshajiang alkali rich intrusive rocks and their Sr and Nd isotopic characteristics. Ser. D Earth Sci. 1997, 40, 524–530. [Google Scholar] [CrossRef]
- Huang, B.; Liang, H.Y.; Mo, J.H.; Xie, Y.W. Zircon LA-ICP-MS U-Pb age of the Jinping-Tongchang porphyry associated with Cu-Mo mineralization and its geological implication. Geotecton. Metallog. 2009, 33, 598–602, (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Yang, L.Q.; Wang, C.M. Research advances of superimposed orogenesis and metallogenesis in the Sanjiang Tethys. Acta Petrol. Sin. 2011, 29, 37–42, (In Chinese with English abstract). [Google Scholar]
- Chen, J.P.; Tang, J.X.; Chen, Y.; Li, B.H.; Shang, B.C. Geological Characteristics and Metallogenic Model of the Narigongma Copper-Molybdenum Deposit in the North Part of the Sanjiang Region, Southwest China. Geoscience 2008, 22, 9–17, (In Chinese with English abstract). [Google Scholar]
- Funahara, S.; Nishiwaki, N.; Murata, F.; Otofuji, Y.I.; Wang, Y.Z. Clockwise rotation of the Red River fault inferred from paleomagnetic study of Cretaceous rocks in the Shan-Thai-Malay block of western Yunnan, China. Earth Planet. Sci. Lett. 1993, 117, 29–42. [Google Scholar] [CrossRef]
- Funahara, S.; Nishiwaki, N.; Miki, M.; Murata, F.; Wang, Y.Z. Paleomagnetic study of Cretaceous rocks from the Yangtze block, central Yunnan, China: Implications for the India-Asia collision. Earth Planet. Sci. Lett. 1992, 113, 77–91. [Google Scholar] [CrossRef]
- Huang, K.; Opdyke, N.D. Paleomagnetic results from Cretaceous and Jurassic rocks of South and Southwest Yunnan: Evidence for large clockwise rotations in the Indochina and Shan-Thai-Malay terranes. Earth Planet. Sci. Lett. 1993, 117, 507–524. [Google Scholar] [CrossRef]
- Chen, H.H.; Dobson, J.; Heller, F.; Hao, J. Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: A consequence of India-Asia collision. Earth Planet. Sci. Lett. 1995, 134, 203–217. [Google Scholar]
- Sato, K.; Liu, Y.Y.; Zhu, Z.C.; Yang, Z.Y.; Otofuji, Y. Paleomagnetic study of Middle Cretaceous rocks from Yunlong western Yunnan, China: Evidence of southward displacement of Indochina. Earth Planet. Sci. Lett. 1999, 165, 1–15. [Google Scholar] [CrossRef]
- Li, D.M.; Cao, Z.M.; Qin, G.X.; He, S.X.; Li, B.H.; Wen, C.Q.; Xu, Z.M. Gold Deposit in Ailaoshan Ophiolite Melange Belt; Geological Publishing House: Beijing, China, 1998; pp. 1–137. (In Chinese) [Google Scholar]
- Deng, B.P.; Liu, X.F.; Lu, Q.X. Sr-Nd-Pb Isotopic Compositions and Their Geological Implications of the Laowangzhai Gold Deposit. Sci. Technol. Eng. 2013, 13, 7947–7952, 7965, (In Chinese with English abstract). [Google Scholar]
- Deng, B.P.; Liu, X.F.; Lu, Q.X.; Zhao, F.F. Isotope Compositions and their Geological Implications of Laowangzhai Gold Deposit. Met. Mine 2013, 445, 109–112, 117, (In Chinese with English abstract). [Google Scholar]
- Deng, B.P.; Liu, X.F.; Zhang, M.; Lu, Q.X.; Zhao, F.F.; Li, C.H.; Chu, Y.T.; Xu, Y.Y.; Tian, X.M.; Liu, H. The petrographical and isotope geochemical tracers for deep ore-forming fluids from the Laowangzhai gold depoist in the northern part of the Ailao Mountains. Chin. J. Geochem. 2013, 32, 281–294. [Google Scholar] [CrossRef]
- Mo, X.X.; Zhao, Z.D.; Yu, X.H. Cenozoic Collision-Post Collisional Igneous Rocks in the Tibetan Plateau; Geological Publishing House: Beijing, China, 2009; pp. 1–396. (In Chinese) [Google Scholar]
- Huang, Z.L.; Wang, L.K.; Zhu, C.M. Elements activity during lamprophyre alteration in Zhenyuan gold deposit, Yunnan. Geotecton. Metallog. 1996, 20, 245–254. [Google Scholar]
- Huang, Z.L.; Xiao, H.Y.; Zhu, D.; Wang, L.K. The law of element activities in the processes of mineralization for lamprophyres in Zhenyuan gold orefield, Yunnan province. Acta Mineral. Sin. 1998, 3, 337–343, (In Chinese with English abstract). [Google Scholar]
- Zhang, J.W.; Wu, J.; Li, C.S.; Su, X.J.; Wang, J.P. Geological features and genesis of Laowangzhai gold deposit in Zhenyuan county, Yunnan. Gold 2010, 31, 19–23, (In Chinese with English abstract). [Google Scholar]
- Zhao, Y.; Wang, Q.F.; Sun, X.; Li, G.J. Characteristics of Ore-Forming Fluid in the Zhenyuan Gold Orefield, Yunnan Province, China. J. Earth Sci. 2013, 24, 203–211. [Google Scholar] [CrossRef]
- Zhang, H.C.; Chai, P.; Zhang, H.R.; Hou, Z.Q.; Chen, S.M.; Sun, Y.B.; Peng, Q. Two-Stage Sulfide Mineral Assemblages in the Mineralized Ultramafic Rocks of the Laowangzhai Gold Deposit (Yunnan, SW China): Implications for Metallogenic Evolution. Resour. Geol. 2019, 69, 270–286. [Google Scholar] [CrossRef]
- Yang, P.; Xu, Y.D.; Cheng, K.; Jiang, H.F.; Ma, Y.X. Metallogenic Conditions and Prospecting Orientation of Mojiang Jinchang Gold Deposit, Yunnan Province, China. Acta Mineral. Sin. 2013, 33, 585–591, (In Chinese with English abstract). [Google Scholar]
- Li, Y.; Jin, S.C.; Yu, G.J. Istope geochemistry and genesis of Mojiang gold deposit, Yunnan. Geol. Geochem. 1998, 4, 15–20, (In Chinese with English abstract). [Google Scholar]
- Zhang, Z.L.; Zhang, S.F.; Yuan, H.H.; He, D.L. An isotope geology and origin study of the Jinchang gold deposit Mojiang, Yunnan. J. Chengdu Coll. Geol. 1987, 4, 29–41, (In Chinese with English abstract). [Google Scholar]
- Xie, G.Q.; Hu, R.Z.; Ni, P.; Su, W.C. Geochemical characteristics in gold-bearing quartz in the Mojiang gold deposit and their indications. Acta Mineral. Sin. 2001, 21, 613–618, (In Chinese with English abstract). [Google Scholar]
- Xiong, Y.Q. The Ore-Forming Processes of Jinchang Hydrothermal Gold and Nickle Deposit, Mojiang, Western Yunnan, China. Master Thesis, China University of Geosciences, Beijing, China, 2014. (In Chinese with English abstract). [Google Scholar]
- Zhang, H.T.; Yang, J.R.; Xue, D.Z. The hydrothermal type gold deposit in altered ultrabasic rock—A discussion about the origin of Jinchang gold deposit. Geol. Yunnan 1984, 4, 311–325, (In Chinese with English abstract). [Google Scholar]
- Zhu, L.H.; Qi, X.X.; Peng, S.B.; Li, Z.Q. Evolution of ore forming fluid of Daping gold deposit in Ailaoshan tectonic zone, Southeast Tibet. Acta Petrol. Sin. 2011, 27, 3395–3408, (In Chinese with English abstract). [Google Scholar]
- Shi, G.Y.; Sun, X.M.; Zhang, Y.; Xiong, D.X.; Zhai, W.; Pan, W.J.; Hu, B.M. H-O-C-S isotopic compositions of ore-forming fluids in Daping gold deposit in Ailaoshan gold belt, Yunnan Province, China. Acta Petrol. Sin. 2010, 26, 1751–1759, (In Chinese with English abstract). [Google Scholar]
- Li, X.J. Metallogenic Mechanism and Prospecting Orientation of Daping Gold Deposit in Yuanyang, Yunnan Province. Master Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English abstract). [Google Scholar]
- Han, R.S.; Jin, S.C.; Lei, L. Geochemistry of ore-forming hydrothermal system of Daping reworked gold deposit Yuanyang, Yunnan. Acta Mineral. Sin. 1997, 17, 337–344, (In Chinese with English abstract). [Google Scholar]
- Li, D.M.; Li, B.H. The mineralization of the gold deposits in the Ailao Mountains, Yunnan. Sediment. Geol. Tethyan Geol. 2000, 1, 60–78, (In Chinese with English abstract). [Google Scholar]
- Ge, L.S.; Deng, J.; Li, H.G.; Yang, L.Q.; Zhang, W.Z.; Yuan, S.S.; Xing, J.B. Superposed mineralization in Daping Au-Cu-Ag-Pb deposit, Yunnan province: Evidences from geology, fluid inclusions and stable isotopes. Acta Petrol. Sin. 2007, 23, 2131–2143, (In Chinese with English abstract). [Google Scholar]
- Yuan, S.S.; Ge, L.S.; Guo, X.D. Lead and sulfur isotope characteristics and geological implication of Daping gold deposit. J. Guilin Univ. Technol. 2011, 31, 11–18, (In Chinese with English abstract). [Google Scholar]
- Yuan, S.S.; Ge, L.S.; Lu, Y.M.; Guo, X.D.; Wang, M.J.; Wang, Z.H.; Zou, Y.L. Relationship between crust-mantle reaction and gold mineralization in Ailaoshan metallogenicbelt: A case study of Daping gold deposit in Yuanyang. Miner. Depos. 2010, 29, 253–264, (In Chinese with English abstract). [Google Scholar]
- Yang, Y.Z.; Long, Q.; Hu, H.T.; Hieu, P.T.; Nguyen, T.B.H.; Chen, F.K. Geochemical characteristics and origin of lamprophyre in the Laichau area, northwestern Vietnam. Acta Petrol. Sin. 2013, 29, 899–911, (In Chinese with English abstract). [Google Scholar]
- Chang, X.Y.; Zhu, B.Q. The application of lead isotopes to geochemical exploration in the Daping gold deposit, Yunnan Province. Acta Geosci. Sin. 2005, 26, 146–150, (In Chinese with English abstract). [Google Scholar]
- Zhang, G.G. Study on Metallogenisis and Ore Structural-Controlling of the Ailaoshan Gold Mineralization Belt. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2017. (In Chinese with English abstract). [Google Scholar]
- Ying, H.L.; Liu, H.L.; Yang, X.Z.; Li, Z.W. Geology and origin of Tongchang gold deposit in Yunnan province. Geol. Resour. 2006, 15, 265–271, (In Chinese with English abstract). [Google Scholar]
- Chen, Y.; Liu, J.L.; Tran, M.D.; Li, Y.C.; Bing, M.M. Regional metallogenesis of the Chang’an gold ore deposit in western Yunnan: Evidences from fluid inclusions and stable isotopes. Acta Geol. Sin. 2010, 84, 1401–1414. [Google Scholar]
- Li, S.H.; Zhang, J.; Deng, J.; Wang, H.; Liu, J.T.; Zhao, K. The characteristics of ore-forming fluid and genetic type of the Chang’ an gold deposit in southern Ailaoshan metallogenic belt. Acta Petrol. Sin. 2011, 27, 3777–3786, (In Chinese with English abstract). [Google Scholar]
- Li, W.; Li, Z.L.; Shi, G.Y. Characters of metamorphic fluid of Ailaoshan, Yunnan. Acta Petrol. Sin. 2000, 16, 649–654, (In Chinese with English abstract). [Google Scholar]
- Zhang, C.; Liu, Y.; Liu, X.D.; Feng, J.Q.; Huang, T.; Zhang, Q.; Wang, X.D. Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit, Northwest Jiaodong, China. Acta Petrol. Sin. 2014, 30, 2495–2506, (In Chinese with English abstract). [Google Scholar]
- Li, S.H.; Zhang, J.; Yang, L.Q.; Wang, H. Origin of metallogenetic materials of the Chang’an gold deposit in the southern Ailaoshan belt: Evidence from sulfur and lead isotopic composition. Geoscience 2013, 27, 879–887, (In Chinese with English abstract). [Google Scholar]
- ECUT (East China University of Technology). Research Report of the Prospecting Direction and Metallogenic Model of the Chang’an Gold Deposit in Jinping County, Yunnan Province; ECUT: Jiangxi, China, 2007. [Google Scholar]
- Bi, X.W.; Hu, R.Z.; He, M.Y. Characteristics of ore-forming fluid of three gold deposits in Ailaoshan gold metallogenic belt. Acta Mineral. Sin. 1997, 17, 435–441, (In Chinese with English abstract). [Google Scholar]
- Xiong, D.X.; Sun, X.M.; Zhai, W.; Shi, G.Y.; Wang, S.W. CO2-Rich Fluid Inclusions in Auriferous Quartz Veins from the Daping Ductile Shear Zone Hosted Gold Deposit in Yunnan Province, China, and Its Implications for Gold Mineralization. Acta Geol. Sin. 2007, 5, 640–653, 721, (In Chinese with English abstract). [Google Scholar]
- Du, D.Y. Ore-Forming Fluids Characteristics of the Daping Gold Deposit, Western Yunnan, China. Master Thesis, China University of Geosciences, Beijing, China, 2015. (In Chinese with English abstract). [Google Scholar]
- Xin, W. Research on Cenozoic Au-Cu-Mo Metallogenesis in Ailaoshan-Honghe Metallogenic Belt, Yunnan Province. Ph.D. Thesis, Jilin University, Jilin, China, 2019. (In Chinese with English abstract). [Google Scholar]
- Deng, J.; Wang, C.M.; Li, G.J. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrol. Sin. 2012, 28, 1349–1361, (In Chinese with English abstract). [Google Scholar]
- Taylor, H. Oxygen and hydrogen isotope relationships in hydrothermal mineral deposits. In Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons Inc.: New York, NY, USA, 1997; pp. 229–302. [Google Scholar]
- Taylor, B.E.; Eichelberger, J.C.; Westrich, H.R. Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 1983, 306, 541–545. [Google Scholar] [CrossRef]
- Taylor, H.P. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol. 1974, 69, 843–883. [Google Scholar] [CrossRef]
- Cao, H.W.; Li, G.M.; Zhang, R.Q.; Zhang, Y.H.; Zhang, L.K.; Dai, Z.W.; Zhang, Z.; Liang, W.; Dong, S.L.; Xia, X.B. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes. Gondwana Res. 2021, 92, 72–101. [Google Scholar] [CrossRef]
- Shimazaki, H.; Shimizu, M.; Nakano, T. Carbon and oxygen isotopes of calcites from Japanese skarn deposits. Geochem. J. 1986, 20, 297–310. [Google Scholar] [CrossRef]
- Sheppard, S.M.F. Characterization and isotopic variations in natural waters. Rev. Miner. 1986, 16, 165–183. [Google Scholar]
- Rollinson, H.R. A terrane interpretation of the archean limpopo belt. Geol. Mag. 1993, 130, 755–765. [Google Scholar] [CrossRef]
- Mao, J.W.; Wang, Z.L.; Li, H.M.; Wang, C.Y.; Chen, Y.C. Carbon and oxygen isotope components in the permian basalt-hosted copper deposit in Ludian area, Yunnan: Implication for mineralization process. Geol. Rev. 2003, 49, 610–615, (In Chinese with English abstract). [Google Scholar]
- Liu, J.M.; Ye, J.; Xu, J.H.; Sun, J.G.; Shen, K. C–O and Sr–Nd isotopic geochemistry of carbonate minerals from gold deposit in East Shandong, China. Acta Petrol. Sin. 2003, 19, 775–784, (In Chinese with English abstract). [Google Scholar]
- Zhang, J.; Yang, Y.; Hu, H.Z.; Wang, Z.G.; Li, G.P.; Li, Z.L. C-S-Pb isotope geochemistry of the Yindonggou orogenic type silver deposit in Henan Province. Acta Petrol. Sin. 2009, 25, 2833–2842, (In Chinese with English abstract). [Google Scholar]
- Phillips, G.N.; Evans, K.A. Role of CO2 in the formation of gold deposits. Nature 2004, 429, 860–863. [Google Scholar] [CrossRef]
- Zheng, Y.F. Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits. Miner. Depos. 2001, 20, 57–70, (In Chinese with English abstract). [Google Scholar]
- Brown, P.E.; Bowman, J.R.; Kelly, W.C. Petrologic and stable isotope constraints on the source and evolution of skarn-forming fluids at Pine Creek, California. Econ. Geol. 1985, 80, 72–95. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Hoefs, J. Carbon and oxygen isotopic covariations in hydrothermal calcites: Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains, Germany. Miner. Depos. 1993, 28, 79–89. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Fu, B.; Zhang, X.H. Effects of magma degassing on the carbon and sulfur isotope compositions of igneous rocks. Chin. J. Geol. 1996, 31, 43–53, (In Chinese with English abstract). [Google Scholar]
- Xiong, D.X.; Sun, X.M.; Zhai, W.; Shi, G.Y.; Wang, S.W. Graphite inclusions with high crystallinity in the gold-bearing quartz veins of the Daping gold deposit, Yunnan Province: Evidence for the involvement of metamorphic fluids of granulite facies in mineralization in the lower crust. Acta Geol. Sin. 2006, 80, 1448–1456, (In Chinese with English abstract). [Google Scholar]
- Lu, Y.J.; Kerrich, R.; Kemp, A.I.S.; McCuaig, T.C.; Hou, Z.Q.; Hart, C.J.R.; Li, Z.X.; Cawood, P.A.; Bagas, L.; Yang, Z.M. Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, Western South China Block, China: Compositional characteristics, sources, and implications for continental collision metallogeny. Econ. Geol. 2013, 108, 1541–1576. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Annual Review of Earth and Planetary Sciences. Chem. Geod. 1986, 14, 493–571. [Google Scholar]
- Guo, Z.F.; Hertogen, J.; Liu, J.Q.; Pasteels, P.; Boven, A.; Punzalan, L.; He, H.Y.; Luo, X.J.; Zhang, W.H. Potassic magmatism in Western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and geochemical constraints on petrogenesis. J. Petrol. 2005, 46, 33–78. [Google Scholar] [CrossRef]
- Hart, S.R. A large-scale isotope anomaly in the southern hemisphere mantle. Nature. 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Zhang, L.S.; Schärer, U. Age and origin of magmatism along the Cenozoic Red Rivershear belt, China. Contrib. Mineral. Petrol. 1999, 134, 67–85. [Google Scholar] [CrossRef]
- Deng, W.M.; Huang, X.; Zhong, D.L. Petrological characteristics and genesis of Cenozoic alkali-rich porphyry in West Yunnan, China. Sci. Geol. Sin. 1998, 33, 412–425, (In Chinese with English abstract). [Google Scholar]
- Zhao, X.; Yu, X.H.; Mo, X.X.; Zhang, J.; Lu, B.X. Petrological and geochemical characteristics of Cenozoic alkali-rich porphyries and xenoliths hosted in western Yunnanprovince. Geoscience 2004, 18, 217–228, (In Chinese with English abstract). [Google Scholar]
- Ohmoto, H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ. Geol. 1972, 67, 551–578. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R.O. Isotope of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits; John Wiley & Sons Inc.: New York, NY, USA, 1979; pp. 509–567. [Google Scholar]
- Butler, I.B.; Böttcher, M.E.; Rickard, D.; Oldroyd, A. Sulfur isotope partitioning during experimental formation of pyrite via the polysulfide and hydrogen sulfide pathways: Implications for the interpretation of sedimentary and hydrothermal pyrite isotope records. Earth Planet Sci. Lett. 2004, 228, 495–509. [Google Scholar] [CrossRef]
- Liu, J.T.; Yang, L.Q.; Lü, L. Pulang reduced porphyry copper deposit in the Zhongdian area, Northwest China:Constrains by the mineral assemblages and the ore-forming fluid compositions. Acta Petrol. Sin. 2013, 29, 3914–3924, (In Chinese with English abstract). [Google Scholar]
- Claypool., G.E.; Holser, W.T.; Kaplan, I.R.; Sakai, H.; Zak, I. The age curves of Sulfur and Ocygen isotopes in Marine Sulfate and their Mutual Inter pretation. Chem. Geol. 1980, 28, 199–260. [Google Scholar] [CrossRef]
- Powell, R.; Will, T.M.; Phillips, G.N. Metamorphism in Archean greenstone belts-calculated fluid compositions and implications for gold mineralization. J. Metamorph. Geol. 1991, 9, 141–150. [Google Scholar] [CrossRef]
- Haeussler, P.J.; Bradley, D.; Goldfarb, R.; Snee, L.; Taylor, C. Link between ridge subduction and gold mineralization in southern Alaska. Geology 1995, 23, 995–998. [Google Scholar] [CrossRef]
- Rock, N.M.S.; Groves, D.I. Can lamprophyres resolve the genetic controversy over mesothermal gold deposits? Geology 1988, 16, 538–541. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Hou, Z.Q.; Jiang, C.Z.; Danyushevsky, L. Geology and genesis of the giant Beiya porphyry–skarn gold deposit, northwestern Yangtze block, China. Ore Geol. Rev. 2015, 70, 457–485. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Zhou, Y.; Wang, R.; Zheng, Y.C.; He, W.Y.; Zhao, M.; Evans, N.J.; Weinberg, R.F. Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology 2017, 45, 563–566. [Google Scholar] [CrossRef] [Green Version]
- Muntean, G.L.; Cline, J.S.; Simon, A.C.; Longo, A.A. Magmatic-hydrothermal origin of Nevada’s Carlin-type gold deposits. Nat. Geosci. 2011, 4, 122–127. [Google Scholar] [CrossRef]
- Hronsky, J.M.A.; Groves, D.I.; Loucks, R.R.; Begg, G.C. A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Miner. Depos. 2012, 47, 339–358. [Google Scholar] [CrossRef]
- Griffin, W.L.; Begg, G.C.; O’Reilly, S.Y. Continental-root control on the genesis of magmatic ore deposits. Nat. Geosci. 2013, 6, 905–910. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Pergamon: Oxford, UK, 2003; pp. 1–64. [Google Scholar]
- He, W.Y.; Mo, X.X.; Yang, L.Q.; Xing, Y.L.; Dong, G.C.; Yang, Z.; Gao, X.; Bao, X.S. Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: Implications for magma mixing/mingling and mineralization. Gondwana Res. 2016, 40, 230–248. [Google Scholar] [CrossRef]
- Cai, Y.F.; Wang, Y.J.; Cawood, P.A.; Fan, W.M.; Liu, H.C.; Xing, X.W.; Zhang, Y.Z. Neoproterozoic subduction along the Ailaoshan zone, South China: Geochronological and geochemical evidence from amphibolite. Precambrian Res. 2014, 245, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Tassara, S.; González-Jiménez, J.M.; Reich, M.; Schilling, M.E.; Morata, D.; Begg, G.; Saunders, E.; Griffin, W.L.; O’Reilly, S.Y.; Grégoire, M.; et al. Plume-subduction interaction forms large auriferous provinces. Nat. Commun. 2017, 8, 843. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.J.; Mccuaig, T.C.; Li, Z.X.; Jourdan, F.; Hart, C.J.R.; Hou, Z.Q.; Tang, S.H. Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos 2015, 233, 139–161. [Google Scholar] [CrossRef] [Green Version]
- Shi, G.Y.; Sun, X.M.; Pan, W.J.; Hu, B.M.; Qu, W.J.; Du, A.D.; Li, C. Re–Os dating of auriferous pyrite from the Zhenyuan super-large gold deposit in Ailaoshan gold belt, Yunnan Province, Southwestern China. Chin. Sci. Bull. 2012, 57, 4578–4586. [Google Scholar] [CrossRef] [Green Version]
- Groves, D.I. The crustal continuum model for late-Archaean lode gold deposits of the YilgarnBlock, Western Australia. Miner. Depos. 1993, 28, 366–374. [Google Scholar] [CrossRef]
- Groves, D.I.; Goldfarb, R.J.; Gebre-Mariam, M. Orogenic gold deposits: A proposedclassification in the context of their crustal distribution and relationship to other gold deposittypes. Ore Geol. Rev. 1998, 13, 7–27. [Google Scholar] [CrossRef]
Gold Deposit | Zhenyuan Laowangzhai | Mojiang Jinchang | Yuanyang Daping | Jinping Chang’an |
---|---|---|---|---|
Proven reserves (t) | 22.484 | 31.740 | 60 | 31.155 |
Average grade (g/t) | 5.29 | 2.69 | 14.30 | 5.84 |
Structural setting | Ailaoshan epi-metamorphic rock belt | Ailaoshan epi-metamorphic rock belt | Southwest of Jinping nappe | Ailaoshan epi-metamorphic rock belt |
Ore-controlling structure | W-trending Jiujia-Mojiang fault and EW-trending Bankan river fault intersection site, the secondary EW-trending thrust brittle-ductile fault and its derived interlayer fault zone | NW-trending NNE-trending secondary normal fault and translation fault on the east side of Jiujia-Mojiang fault | NW to both sides of the Jinzi river fault, between the Sanjia river fault and the Xiaozhai-Jinping fault | NW-trending Tongjiao river fault and Ailaoshan fault intersection site, secondary NW-trending nappe structure slip surface and conjugate NE-trending fault |
Magmatite | It is dominated by ultrabasic rocks and basic rocks, followed by lamprophyre and quartz porphyry | The ultrabasic Jinchang rock pluton | Hercynian Taojiazhai diorite, Yanshanian monzogranite and granite | Himalayan olivine pyroxenite, diabase, gabbro, syenite porphyry, syenite, fine grained syenite and granite and lamprophyre |
Host rock | The Lower Carboniferous altered basalt and lamprophyre are dominated, with a small amount of carbonaceous siliceous slate and sandstone. | Upper Devonian metamorphic quartz sandstone, carbon-bearing slate, silicified sandstone, siliceous rock and pebbly quartzite | Hercynian Taojiazhai diorite | Middle-Upper Silurian dolomite, Lower Ordovician siltstone intercalated with mudstone and conglomerate, and altered diabase of the Himalayan period |
Mineralization style | Disseminated, veined, reticulated and breccia altered rock types | Banded, fine vein disseminated and breccia quartz vein type and altered rock type | Veinlets disseminated quartz vein type | Veined, reticulated and brecciated altered rock types and quartz vein types |
Morphology of ore body | The ore bodies produced along the faults are mainly veins and irregular veins; the ore bodies produced along the layers are layered and lenticular | The ore bodies produced in quartzite are mostly layered and lenticular, and the ore bodies produced in quartz veins are often arranged in geese and appear in groups | Thin veins, not far apart and spread out in parallel | Flame shaped, lenticular structure |
Orebody scale | Length >1000 m, thickness > 1 m | Length >1000 m, width >100 m, the average thickness is 16.25 m | Length >150 m, thickness >2 m | 1800 m long, >40 m thick, with an average thickness of 25 m |
Ore type | Mainly mineralized ultrabasic-basic rocks, sandy (siliceous) sericite and metamorphic sandstone, and some are mineralized basalt and lamprophyre. | Gold-bearing quartz veins, disseminated gold-bearing quartzite, and gold-bearing variable residual siltstone. | Sulfide-quartz vein type, fracture zone altered rock type and breccia type. | Veinlets disseminated sulfide ores and breccia-like oxide ores. |
Gold-bearing mineral | Mainly pyrite | Mainly pyrite, pyrrhotite and marcasite | Mainly pyrite and galena | Quartz, pyrite, arsenopyrite |
Ore mineral | Pyrite, arsenopyrite, arsenopyrite, stibnite, scheelite, galena, sphalerite, chalcopyrite, arsenopyrite, etc. | Pyrite, pyrrhotite, white ore, chalcopyrite, bornite, stibnite, galena, sphalerite, etc. | Pyrite, galena, chalcopyrite, sphalerite, wolframite, arsenic tetrahedrite, etc. | Pyrite, arsenopyrite, hematite, etc. |
Gangue mineral | Quartz, iron dolomite, sericite, etc. | Quartz, chalcedony, cryptocrystalline siliceous, opal, sericite, chlorite, albite, etc. | Quartz, iron dolomite, barite, etc. | Quartz, feldspar, sericite, clay minerals, Muscovite, dolomite, calcite, etc. |
Occurrence of gold | Natural gold and silver gold mines | Natural gold, silver gold mine, selenium gold silver mine, iridium gold mine and palladium gold mine | Natural gold and silver gold mines | Natural gold and silver gold mines |
Element association | Au-As-Hg-Sb | Au-Ni-Ag-Co-Se-PGE | Au-Cu | Au-As-Cu |
Alteration characteristics | Metasomatic quartzification, silicification, sericitization, carbonation and associated sulfidation | Silicification, pyritization, chromium hydromica, liquification, and carbonation | Silicification, pyritization, sericitization, chloritization, epidote and carbonation | Silicification, carbonation, sericite, pyrite, etc. |
References | [20,42,43] | [32,39,44,45,46] | [4,21,40,42] | [16,47,48,49,50] |
No. | Deposit | Sample No. | Sample Description | Mineral | Dating Methods | Age/Ma | References |
---|---|---|---|---|---|---|---|
1 | Mojiang Jinchang | L3 | Nickel ore | Chromium sericite | 40Ar-39Ar | 63.09 ± 0.16 | [33] |
2 | Mojiang Jinchang | L5 | Nickel ore | Chromium sericite | 40Ar-39Ar | 62.05 ± 0.14 | [33] |
3 | Mojiang-Jinchang | Sh4 | Nickel ore | Chromium sericite | 40Ar-39Ar | 61.55 ± 0.23 | [33] |
4 | Mojiang Jinchang | Gold ore | Chromium hydromica | 40K-40Ar | 61 | [53] | |
5 | Mojiang Jinchang | 9704 | Auriferous quartz vein | Quartz | 40Ar-39Ar | 56.49 ± 0.34 | [33] |
6 | Mojiang Jinchang | M4 | Auriferous quartz vein | Quartz | 40Ar-39Ar | 59.67 ± 0.16 | [33] |
7 | Mojiang Jinchang | Sh2-a | Auriferous quartz vein | Quartz | 40Ar-39Ar | 54.02 ± 0.19 | [33] |
8 | Mojiang Jinchang | Sh2-c | Auriferous quartz vein | Quartz | 40Ar-39Ar | 55.74 ± 0.34 | [33] |
9 | Mojiang Jinchang | HBM-62 | Auriferous quartz vein | Quartz | ESR | 66.4 | [54] |
10 | Mojiang Jinchang | HBM-63 | Auriferous quartz vein | Quartz | ESR | 29 | [54] |
11 | Mojiang Jinchang | HBM-105 | Auriferous quartz vein | Quartz | ESR | 44.8 | [54] |
12 | Zhenyuan Laowangzhai | Lamprophyre | Phlogopite | 87Rb-86Sr | 35.6 | [53] | |
13 | Zhenyuan Laowangzhai | Lamprophyre | Phlogopite | 87Rb-86Sr | 43 | [53] | |
14 | Zhenyuan Laowangzhai | Minette | Apatite | F-T | 22.7 ± 3.3 | [38] | |
15 | Zhenyuan Laowangzhai | Minette | Apatite | F-T | 27.1 ± 2.8 | [38] | |
16 | Zhenyuan Laowangzhai | LWZ-1 | Lamprophyre | Phlogopite | 40Ar-39Ar | 30.8 ± 0.4 | [55] |
17 | Zhenyuan Laowangzhai | LWZ-2 | Lamprophyre | Phlogopite | 40Ar-39Ar | 34.3 ± 0.2 | [55] |
18 | Zhenyuan Laowangzhai | Mineralized lamprophyre | Total rock | 87Rb-86Sr | 28.2 | [56] | |
19 | Zhenyuan Laowangzhai | Mineralized lamprophyre | Phlogopite | 40Ar-39Ar | 26.4 ± 0.2 | [55] | |
20 | Zhenyuan Laowangzhai | Mineralized ultrabasic rocks | Chromium hydromica | 87Rb-86Sr | 32.8 | [56] | |
21 | Zhenyuan Laowangzhai | Mineralized ultrabasic rocks | Chromium hydromica | 87Rb-86Sr | 39.6 | [56] | |
22 | Zhenyuan Laowangzhai | Altered minette | Biotite | 87Rb-86Sr | 49.3 | [57] | |
23 | Zhenyuan Laowangzhai | L-48 | Auriferous quartz vein | Quartz | ESR | 37.9 | [54] |
24 | Zhenyuan Laowangzhai | L-12 | Auriferous quartz vein | Quartz | ESR | 54.2 | [54] |
25 | Zhenyuan Laowangzhai | W-26 | Auriferous quartz vein | Quartz | ESR | 47.4 | [54] |
26 | Zhenyuan Laowangzhai | Sericite | 40K-40Ar | 50 | [58] | ||
27 | Zhenyuan Laowangzhai | C02-11 | Quartz porphyry | Zircon | SHRIMP | 248 ± 1 | [59] |
28 | Zhenyuan Laowangzhai | C02-11 | Quartz porphyry | Zircon | LA-ICP-MS | 247.7 ± 1.7 | [59] |
29 | Zhenyuan Laowangzhai | C03-19 | Quartz porphyry | Zircon | LA-ICP-MS | 255.1 ± 2 | [59] |
30 | Zhenyuan Donggualin | Lamprophyre | Phlogopite | 40Ar-39Ar | 36.1 | [53] | |
31 | Zhenyuan Donggualin | Auriferous quartz vein | Quartz | 40Ar-39Ar | 51.8 ± 1.7 | [58] | |
32 | Zhenyuan Donggualin | Altered mineralized rock | Sericite | 87Rb-86Sr | 48.9 | [57] | |
33 | Zhenyuan Kudumu | Alkaline lamprophyre | Total rock | 87Rb-86Sr | 29.1 | [60] | |
34 | Zhenyuan Kudumu | Altered mineralized rock | Chromium hydromica | 87Rb-86Sr | 64.2 | [57] | |
35 | Zhenyuan Kudumu | Altered mineralized rock | Sericite | 87Rb-86Sr | 61.1 | [57] | |
36 | Zhenyuan Langnitang | Lamprophyre | Phlogopite | 40K-40Ar | 30.39 ± 0.46 | [53] | |
37 | Zhenyuan Langnitang | Lamprophyre | Phlogopite | 40K-40Ar | 30.95 ± 0.46 | [53] | |
38 | Zhenyuan Xiachahe | Auriferous quartz vein, mylonite, hypermylonite | Hydrothermal Phlogopite | 40Ar-39Ar | 43.68 ± 0.32 | [61] | |
39 | Yuanyang Daping | HBD-42 | Auriferous quartz vein | Quartz | ESR | 58 | [54] |
40 | Yuanyang Daping | HBD-20 | Auriferous quartz vein | Quartz | ESR | 41.3 | [54] |
41 | Yuanyang Daping | HBD-27 | Auriferous quartz vein | Quartz | ESR | 48.3 | [54] |
42 | Yuanyang Daping | Sericitization diorite | Sericite | 40Ar-39Ar | 33.76 ± 0.65 | [62] | |
43 | Yuanyang Daping | Lamprophyre | 40K-40Ar | 49.38 | [53] | ||
44 | Yuanyang Daping | Altered tectonite | Sericite | 40Ar-39Ar | 33.76 ± 0.65 | [62] | |
45 | Yuanyang Daping | Diorite | Zircon | SHRIMP | 773 ± 12 | [63] | |
46 | Yuanyang Daping | Diorite | Zircon | LA-ICP-MS | 761.6 ± 7.4 | [47] | |
47 | Yuanyang Daping | Biotite monzonitic granite | Zircon | LA-ICP-MS | 731 ± 18 | [47] | |
48 | Jinping Chang’an | Altered quartz syenite porphyry | Total rock | 40K-40Ar | 36 | [64] | |
49 | Jinping Chang’an | Premineralization hornblende syenite porphyry | Biotite | 87Rb-86Sr | 36 | [65] | |
50 | Jinping Chang’an | CAl7 | Lamprophyre | Biotite | 40Ar-39Ar | 35.62 ± 0.16 | [66] |
51 | Jinping Chang’an | Lamprophyre | Biotite | 40Ar-39Ar | 35.27 ± 0.74 | [66] | |
52 | Jinping Chang’an | Mo ore | Molybdenite | Re-Os | 34.54 ± 0.69 | [67] | |
53 | Jinping Chang’an | CA11P32 | Syenite porphyry | Zircon | LA-ICP-MS | 34.49 ± 0.14 | [68] |
54 | Jinping Chang’an | CA11P115 | Syenite porphyry | Zircon | LA-ICP-MS | 34.47 ± 0.07 | [68] |
55 | Jinping Chang’an | CAC07 | Biotite granite porphyry | Zircon | LA-ICP-MS | 33.66 ± 0.06 | [68] |
56 | Jinping Chang’an | CAC09 | Biotite granite porphyry | Zircon | LA-ICP-MS | 34.30 ± 0.05 | [68] |
57 | Jinping Tongchang | Aplite syenite | Zircon | LA-ICP-MS | 36.0 ± 0.19 | [69] | |
58 | Jinping Tongchang | Orthophyre | Zircon | LA-ICP-MS | 34.6 ± 0.2 | [69] | |
59 | Jinping Tongchang | Porphyry copper-molybdenum ore | Molybdenite | Re-Os | 34.38 ± 0.46 | [52] | |
60 | Jinping Tongchang | Mo ore | Molybdenite | Re-Os | 34.04 ± 0.54 | [67] | |
61 | Jinping Tongchang | Amphibole syenite porphyry | Biotite | 40K-40Ar | 36 | [70] | |
62 | Jinping Tongchang | X30-13 | Quartz syenite porphyry | Whole rock | 87Rb-86Sr | 33.9 | [52] |
63 | Jinping Tongchang | X30-14 | Quartz syenite porphyry | Whole rock | 87Rb-86Sr | 35.9 | [52] |
64 | Jinping Tongchang | X30-22 | Quartz syenite porphyry | Whole rock | 87Rb-86Sr | 36.1 | [52] |
65 | Jinping Tongchang | Syenite porphyry | Biotite | 40K-40Ar | 37.7 ± 0.7 | [70] | |
66 | Jinping Tongchang | TC78 | Monzogranite porphyry | Zircon | LA-ICP-MS | 35.1 ± 0.3 | [71] |
Gold Deposit | Zhenyuan Laowangzhai | Mojiang Jinchang | Yuanyang Daping | Jinping Chang’an |
---|---|---|---|---|
Fluid inclusion | It is mainly composed of gas-liquid two-phase aqueous solution inclusions, CO2~H2O three-phase inclusions and two-phase CO2 inclusions, with a gas-liquid ratio of 10% to 60% | Mainly gas-liquid and pure liquid inclusions, the gas-liquid ratio is generally less than 20%, containing a small amount of CO2 rich inclusions, and local fluid inclusions containing daughter crystals | Basically composed of pure CO2 inclusions, CO2~H2O three-phase inclusions, with varying CO2/H2O ratio (0–100%), with fluid inclusions containing daughter crystals locally, and rich in granulite facies quartz inclusions in the early stage. | Two-phase inclusions in brine are dominant, three-phase inclusions of CO2 are rare, and the gas-liquid ratio is mostly 4% to 15%. |
Homogenization temperatures of the main mineralization periods | 130–350 °C, the peak value is 180–240 °C | 200–300.0 °C | 279–406.5 °C,the peak value is 320–360 °C | 210–260 °C and 120–170 °C (two intervals) |
Pressure | 54–81 MPa | 60.0–72.8 MPa | Early metallogenic stage 190–440 MPa, average 290 MPa; main metallogenic stage 133.5–340.0 MPa | 24–73 MPa |
Depth | 1.9–3.3 km | 2.2–2.6 km | Early metallogenic stage 7.2–16.6 km, average 11.0km; main metallogenic stage 5.1–12.9 km, average 9.4 km | 0.90–2.74 km |
Fluid compositions | CO2-H2O-NaCl-ΣS type fluid, XCO2 < XH2O, the fluid is boiling and immiscible. The gas phase composition is basically CO2, with a small amount of CH4 in the early stage. | CO2-H2O-NaCl-ΣS type fluid, XCO2 < XH2O, no obvious boiling phenomenon, gas phase composition is mainly CO2, a small amount of N2, CH4, H2. | CO2-H2O-NaCl (-ΣS) type fluid, XCO2 ≥ XH2O, the fluid has boiling and immiscibility.The gas phase composition is basically CO2 with a small amount of N2 in the early stage. | CO2-H2O-NaCl (-ΣS) type fluid, XCO2 < XH2O |
Salinity w(NaCleqv) % | 2.89–13.66, the average of 7.48 | 4.9–11.0 | 3.70–14.64, the peak value is 7.2–9.0 | 6–18 |
Eh | Reducing fluid | Reducing fluid | Reducing fluid | Reducing fluid |
Migration patterns of gold | Au(HS)2−, [AuAsS3]2− | Au(HS)2− | Au(HS)2− | - |
The precipitation mechanism of gold | Fluid boiling | - | Fluid immiscibility | - |
References | [22,85,86,87]. | [33,91,92,93] | [95,96,97,98,100,101,102,103,104,114] | [41,48,50,107,111,112] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, D.; Wang, C.; Sun, Y.; Pu-chi, M. Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids. Minerals 2021, 11, 1276. https://doi.org/10.3390/min11111276
Li Y, Wang D, Wang C, Sun Y, Pu-chi M. Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids. Minerals. 2021; 11(11):1276. https://doi.org/10.3390/min11111276
Chicago/Turabian StyleLi, Yang, Denghong Wang, Chenghui Wang, Yan Sun, and MIMA Pu-chi. 2021. "Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids" Minerals 11, no. 11: 1276. https://doi.org/10.3390/min11111276
APA StyleLi, Y., Wang, D., Wang, C., Sun, Y., & Pu-chi, M. (2021). Geology and Geochemistry of Selected Gold Deposits in the Ailaoshan Metallogenic Belt, China: Origin of Ore-Forming Fluids. Minerals, 11(11), 1276. https://doi.org/10.3390/min11111276