Uranium Rhizofiltration by Lactuca sativa, Brassica campestris L., Raphanus sativus L., Oenanthe javanica under Different Hydroponic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation
2.2. Uranium Rhizofiltration Experiments
2.2.1. Rhizofiltration Experiments with Different Initial Uranium Concentrations and pH Values
2.2.2. Rhizofiltration Experiment with Genuine Groundwater
2.3. Analysis of Uranium Accumulation in Plants
2.4. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectrometry
3. Results and Discussion
3.1. Rhizofiltration Experiments with Different Initial Uranium Concentrations and pH Values
3.2. Rhizofiltration Experiment with Genuine Groundwater
3.3. SEM/EDS Analysis of Uranium Adsorbed on Plant Roots
3.4. Uranium BCF Trends in Plants
4. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonkiewicz, J.; Jasiewicz, C. The use of plants accumulating heavy metals for detoxication of chemically polluted soils. Electron. J. Polish Agric. Univ. 2002, 5, 121–143. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yu, H.; Wang, J.; Fang, W.; Yuan, J.; Yang, Z. Heavy Metal Accumulations of 24 Asparagus Bean Cultivars Grown in Soil Contaminated with Cd Alone and with Multiple Metals (Cd, Pb, and Zn). J. Agric. Food Chem. 2007, 55, 1045–1052. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhou, Q.; Zhang, Z.; Hua, T.; Cai, Z. Evaluation of Cadmium Phytoremediation Potential in Chinese Cabbage Cultivars. J. Agric. Food Chem. 2011, 59, 8324–8330. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.; Zhou, L.; Chen, L.; Li, Z.; Wu, L.; Christie, P.; Luo, Y. Oxytetracycline Toxicity and Its Effect on Phytoremediation by Sedum plumbizincicola and Medicago sativain Metal-Contaminated Soil. J. Agric. Food Chem. 2016, 64, 8045–8053. [Google Scholar] [CrossRef] [PubMed]
- Gramss, G.; Voigt, K.-D. Regulation of the mineral concentrations in pea seeds from uranium mine and reference soils diverging extremely in their heavy metal load. Sci. Hortic. 2015, 194, 255–266. [Google Scholar] [CrossRef]
- Wang, N.; Wei, Q.; Yan, T.; Pan, Z.; Liu, Y.; Peng, S. Improving the boron uptake of boron-deficient navel orange plants under low boron conditions by inarching boron-efficient rootstock. Sci. Hortic. 2016, 199, 49–55. [Google Scholar] [CrossRef]
- Beveridge, T.J.; Murray, R.G. Sites of metal deposition in the cell wall of Bacillus subtilis. J. Bacteriol. 1980, 141, 876–887. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, Y.; Kelly, S.D.; Kemner, K.M.; Banfield, J.F. Nanometre-size products of uranium bioreduction. Nat. Cell Biol. 2002, 419, 134. [Google Scholar] [CrossRef]
- Katsoyiannis, I.A.; Althoff, H.W.; Bartel, H.; Jekel, M. The effect of groundwater composition on uranium(VI) sorption onto bacteriogenic iron oxides. Water Res. 2006, 40, 3646–3652. [Google Scholar] [CrossRef]
- Pabalan, R.T.; Turner, D.R. Uranium(6+) sorption on montmorillonite: Experimental and surface complexation modeling study. Aquat. Geochem. 1997, 2, 203–226. [Google Scholar] [CrossRef]
- Ebbs, S.D.; Brady, D.; Kochian, L.V. Role of uranium speciation in the uptake and translocation of uranium by plants. J. Exp. Bot. 1998, 49, 1183–1190. [Google Scholar] [CrossRef]
- Cornish, J.E. Evaluation of in situ phytoremediation of uranium-contaminated soils in Ohio and Montana. In Proceedings of the Hazardous Management’95 Conference Proceeding, Tuscon, AZ, USA, 26 February–3 March 1995. [Google Scholar]
- Dushenkov, V.; Kumar, P.B.A.N.; Motto, H.; Raskin, I. Rhizofiltration: The Use of Plants to Remove Heavy Metals from Aqueous Streams. Environ. Sci. Technol. 1995, 29, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Dushenkov, S.; Vasudev, D.; Kapulnik, Y.; Gleba, D.; Fleisher, D.; Ting, K.C.; Ensley, B. Removal of Uranium from Water Using Terrestrial Plants. Environ. Sci. Technol. 1997, 31, 3468–3474. [Google Scholar] [CrossRef]
- Willey, N.; Collins, C. Phytoremediation of soil contaminated with low concentration of radionuclides. Water Air Soil Pollut. 1996, 88, 167–176. [Google Scholar]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Waite, T.; Davis, J.; Payne, T.; Waychunas, G.; Xu, N. Uranium(VI) adsorption to ferrihydrite: Application of a surface complexation model. Geochim. Cosmochim. Acta 1994, 58, 5465–5478. [Google Scholar] [CrossRef]
- Ebbs, S.D.; Brady, D.; Norvell, W.; Kochian, L.V. Uranium Speciation, Plant Uptake, and Phytoremediation. In Environmental and Pipeline Engineering 2000; American Society of Civil Engineers (ASCE): Reston, VA, USA, 2000; pp. 466–475. [Google Scholar]
- Serre, N.B.; Alban, C.; Bourguignon, J.; Ravanel, S. Uncovering the physiological and cellular effects of uranium on the root system of Arabidopsis thaliana. Environ. Exp. Bot. 2019, 157, 121–130. [Google Scholar] [CrossRef]
- Soudek, P.; Petrova, S.; Benešová, D.; Dvorakova, M.; Vanek, T. Uranium uptake by hydroponically cultivated crop plants. J. Environ. Radioact. 2011, 102, 598–604. [Google Scholar] [CrossRef]
- Stojanović, M.D.; Mihajlović, M.L.; Milojković, J.; Lopičić, Z.R.; Adamović, M.; Stanković, S. Efficient phytoremediation of uranium mine tailings by tobacco. Environ. Chem. Lett. 2012, 10, 377–381. [Google Scholar] [CrossRef]
- Viehweger, K.; Geipel, G. Uranium accumulation and tolerance in Arabidopsis halleri under native versus hydroponic conditions. Environ. Exp. Bot. 2010, 69, 39–46. [Google Scholar] [CrossRef]
- Eapen, S.; Suseelan, K.; Tivarekar, S.; Kotwal, S.; Mitra, R. Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ. Res. 2003, 91, 127–133. [Google Scholar] [CrossRef]
- Lee, M.; Yang, M. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J. Hazard. Mater. 2010, 173, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Tomé, F.V.; Rodríguez, P.B.; Lozano, J. Elimination of natural uranium and 226 Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci. Total. Environ. 2008, 393, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Bhainsa, K.; D’Souza, S.F. Investigation of uranium accumulation potential and biochemical responses of an aquatic weed Hydrilla verticillata (L.f.) Royle. Bioresour. Technol. 2010, 101, 2573–2579. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Jawitz, J.W.; Lee, M. Uranium and cesium accumulation in bean (Phaseolus vulgaris L. var. vulgaris) and its potential for uranium rhizofiltration. J. Environ. Radioact. 2015, 140, 42–49. [Google Scholar] [CrossRef]
- NIAST. Methods of Soil and Plant Analysis; National Institute of Agricultural Science and Technology: Suwon, Korea, 2000. [Google Scholar]
- Zayed, A.; Gowthaman, S.; Terry, N. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. J. Environ. Qual. 1998, 27, 715–721. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S. A comparative study of cadmium phytoextraction by accumulator and weed species. Environ. Pollut. 2005, 133, 365–371. [Google Scholar] [CrossRef]
- Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Mkandawire, M.; Dudel, E.G.; Taubert, B. Accumulation of uranium in Lemna gibba L. in relation to milieu conditions of tailing waters in abandoned uranium mines in Germany. Mine Water Process Policy Prog. 2004, 2, 9–18. [Google Scholar]
- Mkandawire, M.; Taubert, B.; Dudel, E.G. Capacity of Lemna gibba L. (Duckweed) for Uranium and Arsenic Phytoremediation in Mine Tailing Waters. Int. J. Phytoremediat. 2004, 6, 347–362. [Google Scholar] [CrossRef]
- Pratas, J.; Paulo, C.; Favas, P.J.; Venkatachalam, P. Potential of aquatic plants for phytofiltration of uranium-contaminated waters in laboratory conditions. Ecol. Eng. 2014, 69, 170–176. [Google Scholar] [CrossRef]
- Ramaswami, A.P.A.; Carr, P.; Burkhardt, M. Plant-Uptake of Uranium: Hydroponic and Soil System Studies. Int. J. Phytoremediat. 2001, 3, 189–201. [Google Scholar] [CrossRef]
- Tomé, F.V.; Rodríguez, P.B.; Lozano, J. The ability of Helianthus annuus L. and Brassica juncea to uptake and translocate natural uranium and 226Ra under different milieu conditions. Chemosphere 2009, 74, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Mkandawire, M.; Taubert, B.; Dudel, E.G. Resource manipulation in uranium and arsenic attenuation by Lemna gibba L.(duckweed) in tailing water of a former uranium mine. Water Air Soil Pollut. 2005, 166, 83–101. [Google Scholar] [CrossRef]
- Rodríguez, P.B.; Tomé, F.V.; Fernández, M.P.; Lozano, J. Linearity assumption in soil-to-plant transfer factors of natural uranium and radium in Helianthus annuus L. Sci. Total Environ. 2006, 361, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Vuković, A.; Semenishchev, V.S.; Inouhe, M.; Walther, C. Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L. Environ. Sci. Pollut. Res. 2020, 27, 3513–3522. [Google Scholar] [CrossRef] [PubMed]
- Sasmaz, A.; Obek, E. The accumulation of arsenic, uranium, and boron in Lemna gibba L. exposed to secondary effluents. Ecol. Eng. 2009, 35, 1564–1567. [Google Scholar] [CrossRef]
- Overall, R.A.; Parry, D.L. The uptake of uranium by Eleocharis dulcis (Chinese water chestnut) in the Ranger Uranium Mine constructed wetland filter. Environ. Pollut. 2004, 132, 307–320. [Google Scholar] [CrossRef]
- Yang, M.; Her, N. Perchlorate in Soybean Sprouts (Glycine max L. Merr.), Water Dropwort (Oenanthe stolonifera DC.), and Lotus (Nelumbo nucifera Gaertn.) Root in South Korea. J. Agric. Food Chem. 2011, 59, 7490–7495. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Lee, J.; Kim, C.; Park, J.; Lee, M.; Yang, M. Uranium Rhizofiltration by Lactuca sativa, Brassica campestris L., Raphanus sativus L., Oenanthe javanica under Different Hydroponic Conditions. Minerals 2021, 11, 41. https://doi.org/10.3390/min11010041
Han Y, Lee J, Kim C, Park J, Lee M, Yang M. Uranium Rhizofiltration by Lactuca sativa, Brassica campestris L., Raphanus sativus L., Oenanthe javanica under Different Hydroponic Conditions. Minerals. 2021; 11(1):41. https://doi.org/10.3390/min11010041
Chicago/Turabian StyleHan, Yikyeong, Juyeon Lee, Changmin Kim, Jinyoung Park, Minhee Lee, and Minjune Yang. 2021. "Uranium Rhizofiltration by Lactuca sativa, Brassica campestris L., Raphanus sativus L., Oenanthe javanica under Different Hydroponic Conditions" Minerals 11, no. 1: 41. https://doi.org/10.3390/min11010041
APA StyleHan, Y., Lee, J., Kim, C., Park, J., Lee, M., & Yang, M. (2021). Uranium Rhizofiltration by Lactuca sativa, Brassica campestris L., Raphanus sativus L., Oenanthe javanica under Different Hydroponic Conditions. Minerals, 11(1), 41. https://doi.org/10.3390/min11010041