Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure
Abstract
:1. Introduction
2. Sample and Experiments
2.1. Sample
2.2. Synchrotron Single-Crystal XRD Experiments
2.2.1. High-Pressure and Ambient-Temperature Single-Crystal XRD Experiment
2.2.2. High-Pressure and High-Temperature Single-Crystal XRD Experiment
2.3. High-Temperature Synchrotron Powder XRD Experiment
2.4. High-Pressure Raman Spectroscopy Experiment
3. Results
3.1. P-V Equation of State and Raman Spectroscopy
3.2. Thermal Expansion of Topaz
4. Discussion
4.1. P-V Equation of State
4.2. P-T Phase Diagram and Stability of Topaz under High P-T Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ni, H.W.; Zheng, Y.F.; Mao, Z.; Wang, Q.; Chen, R.; Zhang, L. Distribution, cycling and impact of water in the Earth’s interior. Natl. Sci. Rev. 2017, 4, 879–891. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.F.; Chen, R.X.; Xu, Z.; Zhang, S.B. The transport of water in subduction zones. Sci. China Earth Sci. 2016, 59, 651–682. [Google Scholar] [CrossRef]
- Bindi, L.; Bendeliani, A.; Bobrov, A.; Matrosova, E.; Irifune, T. Incorporation of Mg in phase Egg, AlSiO3OH: Toward a new polymorph of phase H, MgSiH2O4, a carrier of water in the deep mantle. Am. Mineral. 2020, 105, 132–135. [Google Scholar] [CrossRef]
- Panero, W.R.; Caracas, R. Stability and Solid Solutions of Hydrous Alumino-Silicates in the Earth’s Mantle. Minerals 2020, 10, 330. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.F. Subduction zone geochemistry. Geosci. Front. 2019, 10, 1223–1254. [Google Scholar] [CrossRef]
- Piet, H.; Leinenweber, K.D.; Tappan, J.; Greenberg, E.; Prakapenka, V.B.; Buseck, P.R.; Shim, S.H. Dehydration of delta-AlOOH in Earth’s Deep Lower Mantle. Minerals 2020, 10, 384. [Google Scholar] [CrossRef]
- Nakao, A.; Iwamori, H.; Nakakuki, T. Effects of water transportation on subduction dynamics: Roles of viscosity and density reduction. Earth Planet. Sci. Lett. 2016, 454, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.C.; Matsukage, K.N.; Nishihara, Y.; Suzuki, T.; Takahashi, E. Stability of the hydrous phases of Al-rich phase D and Al-rich phase H in deep subducted oceanic crust. Am. Mineral. 2019, 104, 64–72. [Google Scholar] [CrossRef]
- Kakizawa, S.; Inoue, T.; Nakano, H.; Kuroda, M.; Sakamoto, N.; Yurimoto, H. Stability of Al-bearing superhydrous phase B at the mantle transition zone and the uppermost lower mantle. Am. Mineral. 2018, 103, 1221–1227. [Google Scholar] [CrossRef]
- Zhang, L.; Smyth, J.R.; Kawazoe, T.; Jacobsen, S.D.; Niu, J.J.; He, X.J.; Qin, S. Stability, composition, and crystal structure of Fe-bearing Phase E in the transition zone. Am. Mineral. 2019, 104, 1620–1624. [Google Scholar] [CrossRef]
- Peng, Y.; Mookherjee, M. Thermoelasticity of tremolite amphibole: Geophysical implications. Am. Mineral. 2020, 105, 904–916. [Google Scholar] [CrossRef]
- Satta, N.; Marquardt, H.; Kurnosov, A.; Buchen, J.; Kawazoe, T.; McCammon, C.; Ballaran, T.B. Single-crystal elasticity of iron-bearing phase E and seismic detection of water in Earth’s upper mantle. Am. Mineral. 2019, 104, 1526–1529. [Google Scholar] [CrossRef] [Green Version]
- Schulze, K.; Pamato, M.G.; Kurnosov, A.; Ballaran, T.B.; Glazyrin, K.; Pakhomova, A.; Marquardt, H. High-pressure single-crystal structural analysis of AlSiO3OH phase egg. Am. Mineral. 2018, 103, 1975–1980. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.G.; Kuang, Y.Q.; Zhang, B.; Liu, Y.G.; Fan, D.W.; Li, X.D.; Xie, H.S. Thermal equation of state of natural tourmaline at high pressure and temperature. Phys. Chem. Miner. 2016, 43, 315–326. [Google Scholar] [CrossRef]
- Xu, J.G.; Zhang, D.Z.; Fan, D.W.; Wu, X.; Shi, F.; Zhou, W.G. Compressional behavior of natural eclogitic zoisite by synchrotron X-ray single-crystal diffraction to 34 GPa. Phys. Chem. Miner. 2019, 46, 333–341. [Google Scholar] [CrossRef]
- Yang, C.P.; Inoue, T.; Kikegawa, T. P–V–T equation of state of hydrous phase A up to 10.5 GPa. Am. Mineral. 2020. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Redfern, S.A.T.; Pawley, A.R. Volume behavior of hydrous minerals at high pressure and temperature; II, Compressibilities of lawsonite, zoisite, clinozoisite, and epidote. Am. Mineral. 1996, 81, 341–348. [Google Scholar] [CrossRef]
- Wunder, B.; Rubie, D.C.; Ross, C.R.; Medenbach, O.; Seifert, F.; Schreyer, W. Synthesis, stability, and properties of Al2SiO4(OH)2: A fully hydrated analog of topaz. Am. Mineral. 1993, 78, 285–297. [Google Scholar]
- O’Bannon, E.F.; Williams, Q. A Cr3+ luminescence study of natural topaz Al2SiO4(F,OH)2 up to 60 GPa. Am. Mineral. 2019, 104, 1656–1662. [Google Scholar] [CrossRef]
- Yamamoto, S.; Senshu, H.; Rino, S.; Omori, S.; Maruyama, S. Granite subduction: Arc subduction, tectonic erosion and sediment subduction. Gondwana Res. 2009, 15, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Zou, T.R.; Chao, H.Z.; Wu, B.Q. Orogenic and anorogenic granitoids in the altay mountains of xinjiang and their discrimination criteria. Acta Geol. Sinica Engl. Ed. 1989, 2, 45–64. [Google Scholar] [CrossRef]
- Wunder, B.; Medenbach, O.; Krause, W.; Schreyer, W. Synthesis, properties and stability of Al3Si2O7(OH)3 (Phase Pi), a hydrous high-pressure phase in the system Al2O3-SiO2-H2O (ASH). Eur. J. Mineral. 1993, 5, 637–649. [Google Scholar] [CrossRef]
- Ono, S. High temperature stability limit of phase egg, AlSiO3(OH). Contrib. Mineral. Petr. 1999, 137, 83–89. [Google Scholar] [CrossRef]
- Letnikov, F.A. Topaz granites in northern Kazakhstan. Petrology 2008, 16, 319–334. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.F.; Green, H.W. Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth’s mantle transition zone conditions. J. Metamorph. Geol. 2007, 25, 83–96. [Google Scholar] [CrossRef]
- Tennakoon, S.; Peng, Y.; Mookherjee, M.; Speziale, S.; Manthilake, G.; Besara, T.; Andreu, L.; Rivera, F. Single crystal elasticity of natural topaz at high-temperatures. Sci. Rep. UK 2018, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Barton, M.D.; Haselton, H.T.; Hemingway, B.S.; Kleppa, O.J.; Robie, R.A. The thermodynamic properties of fluor-topaz. Am. Mineral. 1982, 67, 350–355. [Google Scholar]
- Zhang, R.Y.; Liou, J.G.; Shu, J.F. Hydroxyl-rich topaz in high-pressure and ultrahigh-pressure kyanite quartzites, with retrograde woodhouseite, from the Sulu terrane, eastern China. Am. Mineral. 2002, 87, 445–453. [Google Scholar] [CrossRef]
- Alberico, A.; Ferrando, S.; Ivaldi, G.; Ferraris, G. X-ray single-crystal structure refinement of an OH-rich topaz from Sulu UHP terrane (Eastern China)-Structural foundation of the correlation between cell parameters and fluorine content. Eur. J. Mineral. 2003, 15, 875–881. [Google Scholar] [CrossRef]
- Gatta, G.D.; Nestola, F.; Ballaran, T.B. Elastic behaviour and structural evolution of topaz at high pressure. Phys. Chem. Miner. 2006, 33, 235–242. [Google Scholar] [CrossRef]
- Liu, Y.X.; Qin, S.; Li, H.J.; Li, X.D.; Liu, J. In situ high-pressure X-ray diffraction of natural topaz. Nucl. Sci. Tech. 2008, 31, 497–500. [Google Scholar]
- Gatta, G.D.; Morgenroth, W.; Dera, P.; Petitgirard, S.; Liermann, H.P. Elastic behavior and pressure-induced structure evolution of topaz up to 45 GPa. Phys. Chem. Miner. 2014, 41, 569–577. [Google Scholar] [CrossRef]
- Komatsu, K.; Kagi, H.; Marshall, W.G.; Kuribayashi, T.; Parise, J.B.; Kudoh, Y. Pressure dependence of the hydrogen-bond geometry in topaz-OD from neutron powder diffraction. Am. Mineral. 2008, 93, 217–227. [Google Scholar] [CrossRef]
- Komatsu, K.; Kuribayashi, T.; Kudoh, Y. Effect of temperature and pressure on the crystal structure of topaz, Al2SiO4(OH, F)2. J. Miner. Petrol. Sci. 2003, 98, 167–180. [Google Scholar] [CrossRef] [Green Version]
- Mookherjee, M.; Tsuchiya, J.; Hariharan, A. Crystal structure, equation of state, and elasticity of hydrous aluminosilicate phase, topaz-OH (Al2SiO4(OH)2) at high pressures. Phys. Earth Planet. Inter. 2016, 251, 24–35. [Google Scholar] [CrossRef]
- Ulian, G.; Valdre, G. Effects of fluorine content on the elastic behavior of topaz [Al2SiO4(F,OH)2]. Am. Mineral. 2017, 102, 347–356. [Google Scholar] [CrossRef]
- Haussuhl, S. Thermoelastic properties of beryl, topaz, diaspore, sanidine and periclase. Z. Kristallogr. 1993, 204, 67–76. [Google Scholar] [CrossRef]
- Komatsu, K.; Kagi, H.; Okada, T.; Kuribayashi, T.; Parise, J.B.; Kudoh, Y. Pressure dependence of the OH-stretching mode in F-rich natural topaz and topaz-OH. Am. Mineral. 2005, 90, 266–270. [Google Scholar] [CrossRef]
- Fei, Y.W.; Ricolleau, A.; Frank, M.; Mibe, K.; Shen, G.Y.; Prakapenka, V. Toward an internally consistent pressure scale. Proc. Natl. Acad. Sci. USA 2007, 104, 9182–9186. [Google Scholar] [CrossRef] [Green Version]
- Rivers, M.; Prakapenka, V.B.; Kubo, A.; Pullins, C.; Holl, C.M.; Jacobsen, S.D. The COMPRES/GSECARS gas-loading system for diamond anvil cells at the Advanced Photon Source. High Press. Res. 2008, 28, 273–292. [Google Scholar] [CrossRef]
- Dera, P.; Zhuravlev, K.; Prakapenka, V.; Rivers, M.L.; Finkelstein, G.J.; Grubor-Urosevic, O.; Tschauner, O.; Clark, S.M.; Downs, R.T. High pressure single-crystal micro X-ray diffraction analysis with GSE_ADA/RSV software. High Press. Res. 2013, 33, 466–484. [Google Scholar] [CrossRef]
- Kantor, I.; Prakapenka, V.; Kantor, A.; Dera, P.; Kurnosov, A.; Sinogeikin, S.; Dubrovinskaia, N.; Dubrovinsky, L. BX90: A new diamond anvil cell design for X-ray diffraction and optical measurements. Rev. Sci. Instrum. 2012, 83, 6. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.W.; Fu, S.Y.; Yang, J.; Tkachev, S.N.; Prakapenka, V.B.; Lin, J.F. Elasticity of single-crystal periclase at high pressure and temperature: The effect of iron on the elasticity and seismic parameters of ferropericlase in the lower mantle. Am. Mineral. 2019, 104, 262–275. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. Solid Earth Planet. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Zhang, D.Z.; Dera, P.K.; Eng, P.J.; Stubbs, J.E.; Zhang, J.S.; Prakapenka, V.B.; Rivers, M.L. High pressure single crystal diffraction at PX^2. Jove J. Vis. Exp. 2017. [Google Scholar] [CrossRef] [Green Version]
- Fan, D.W.; Zhou, W.G.; Wei, S.Y.; Liu, Y.G.; Ma, M.N.; Xie, H.S. A simple external resistance heating diamond anvil cell and its application for synchrotron radiation X-Ray diffraction. Rev. Sci. Instrum. 2010, 81, 5. [Google Scholar] [CrossRef] [PubMed]
- Hammersley, A.P.; Svensson, S.O.; Hanfland, M.; Fitch, A.N.; Hausermann, D. Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Res. 1996, 14, 235–248. [Google Scholar] [CrossRef]
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef] [Green Version]
- Toby, B.H.; Von Dreele, R.B.; Larson, A.C. CIF applications. XIV. Reporting of Rietveld results using pdCIF: GSAS2CIF. J. Appl. Crystallogr. 2003, 36, 1290–1294. [Google Scholar] [CrossRef]
- Le Bail, A.; Duroy, H.; Fourquet, J.L. Ab-initio structure determination of LiSbWO6 by X-ray-powder diffraction. Mater. Res. Bull. 1988, 23, 447–452. [Google Scholar] [CrossRef]
- Angel, R.J.; Gonzalez-Platas, J.; Alvaro, M. EosFit7c and a Fortran module (library) for equation of state calculations. Z. Krist. Cryst. Mater. 2014, 229. [Google Scholar] [CrossRef]
- Angel, R.J. Equations of State. Rev. Mineral. Geochem. 2000, 41, 35–59. [Google Scholar] [CrossRef]
- Gauzzi, T.; Graca, L.M.; Lagoeiro, L.; Mendes, I.D.; Queiroga, G.N. The fingerprint of imperial topaz from Ouro Preto region (Minas Gerais state, Brazil) based on cathodoluminescence properties and composition. Mineral. Mag. 2018, 82, 943–960. [Google Scholar] [CrossRef]
- Agangi, A.; Gucsik, A.; Nishido, H.; Ninagawa, K.; Kamenetsky, V.S. Relation between cathodoluminescence and trace-element distribution of magmatic topaz from the Ary-Bulak massif, Russia. Mineral. Mag. 2018, 80, 881–899. [Google Scholar] [CrossRef]
- Gatta, G.D.; Merlini, M.; Lee, Y.; Poli, S. Behavior of epidote at high pressure and high temperature: A powder diffraction study up to 10 GPa and 1,200 K. Phys. Chem. Miner. 2011, 38, 419–428. [Google Scholar] [CrossRef]
- Angel, R.J.; Bujak, M.; Zhao, J.; Gatta, G.D.; Jacobsen, S.D. Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 2007, 40, 26–32. [Google Scholar] [CrossRef]
- Klotz, S.; Chervin, J.C.; Munsch, P.; Le Marchand, G. Hydrostatic limits of 11 pressure transmitting media. J. Phys. D Appl. Phys. 2009, 42, 7. [Google Scholar] [CrossRef]
- Pawley, A.R. The pressure and temperature stability limits of lawsonite-implications for H2O recycling in subduction zones. Contrib. Mineral. Petr. 1994, 118, 99–108. [Google Scholar] [CrossRef]
- Pollack, H.N.; Chapman, D.S. Regional Variation of Heat-Flow, Geotherms, and Lithospheric Thickness. Tectonophysics 1977, 38, 279–296. [Google Scholar] [CrossRef] [Green Version]
- Zang, S.X.; Liu, Y.G.; Ning, J.Y. Thermal structure of the lithosphere in North China. Chin. J Geophys. 2002, 45, 56–66. [Google Scholar] [CrossRef]
- Artemieva, I.M.; Mooney, W.D. Thermal thickness and evolution of Precambrian lithosphere: A global study. J. Geophys. Res. Solid Earth 2001, 106, 16387–16414. [Google Scholar] [CrossRef] [Green Version]
- Bina, C.R.; Navrotsky, A. Possible presence of high-pressure ice in cold subducting slabs. Nature 2000, 408, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Domanik, K.J.; Holloway, J.R. The stability and composition of phengitic muscovite and associated phases from 5.5 to 11 GPa: Implications for deeply subducted sediments. Geochim. Cosmochim. Acta 1996, 60, 4133–4150. [Google Scholar] [CrossRef]
- Koch-Muller, M.; Matsyuk, S.S.; Rhede, D.; Wirth, R.; Khisina, N. Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe. Phys. Chem. Miner. 2006, 33, 276–287. [Google Scholar] [CrossRef]
- Bell, D.R.; Rossman, G.R.; Moore, R.O. Abundance and partitioning of OH in a high-pressure magmatic system: Megacrysts from the Monastery kimberlite, South Africa. J. Petrol. 2004, 45, 1539–1564. [Google Scholar] [CrossRef] [Green Version]
- Katayama, I.; Nakashima, S.; Yurimoto, H. Water content in natural eclogite and implication for water transport into the deep upper mantle. Lithos 2006, 86, 245–259. [Google Scholar] [CrossRef]
- Grutzner, T.; Klemme, S.; Rohrbach, A.; Gervasoni, F.; Berndt, J. The effect of fluorine on the stability of wadsleyite: Implications for the nature and depths of the transition zone in the Earth’s mantle. Earth Planet Sci. Lett. 2018, 482, 236–244. [Google Scholar] [CrossRef]
Pressure (GPa) | a (Å) | b (Å) | c (Å) | V (Å3) |
---|---|---|---|---|
0.26 (1) | 4.6463 (7) | 8.801 (1) | 8.394 (1) | 343.25 (7) |
0.59 (2) | 4.6421 (7) | 8.799 (1) | 8.391 (1) | 342.72 (6) |
1.23 (5) | 4.6382 (6) | 8.785 (1) | 8.379 (1) | 341.40 (7) |
3.8 (2) | 4.6105 (6) | 8.758 (1) | 8.331 (3) | 336.4 (1) |
4.6 (2) | 4.6034 (5) | 8.7467 (9) | 8.320 (1) | 334.99 (6) |
5.5 (2) | 4.5959 (5) | 8.7321 (9) | 8.305 (1) | 333.30 (6) |
6.7 (3) | 4.5828 (5) | 8.7219 (9) | 8.280 (1) | 330.96 (6) |
7.6 (3) | 4.5752 (5) | 8.7083 (9) | 8.270 (1) | 329.49 (6) |
8.6 (3) | 4.5653 (5) | 8.6955 (9) | 8.251 (1) | 327.56 (6) |
9.9 (4) | 4.5521 (5) | 8.6787 (9) | 8.227 (1) | 325.01 (6) |
11.2 (5) | 4.5407 (5) | 8.6639 (9) | 8.204 (1) | 322.73 (6) |
13.4 (5) | 4.5219 (5) | 8.6381 (9) | 8.171 (1) | 319.15 (6) |
ω0 (cm−1) | dω/dP (cm−1/GPa) | Grüneisen Parameters | Assignment |
---|---|---|---|
991.7 (6) | 4.16 (3) | 0.721 (6) | ν2 |
924.6 (2) | 4.2 (1) | 0.78 (3) | ν2 |
852.9 (1) | 5.12 (9) | 1.03 (2) | ν2 |
457.2 (1) | 1.77 (1) | 0.667 (6) | ν5 |
403.5 (1) | 0.93 (2) | 0.395 (9) | ν4 |
332.52 (7) | 2.20 (2) | 1.14 (1) | ν3 |
286.38 (6) | 1.88 (1) | 1.13 (1) | ν2 |
268.14 (5) | 1.00 (4) | 0.64 (3) | ν2 |
239.8 (1) | 0.96 (3) | 0.69 (2) | ν1 |
Temperature (K) | a (Å) | b (Å) | c (Å) | V (Å3) |
---|---|---|---|---|
298 | 4.6411 (3) | 8.7912 (6) | 8.3804 (6) | 341.92 (4) |
323 | 4.6440 (2) | 8.7873 (4) | 8.3799 (4) | 341.96 (3) |
353 | 4.6440 (2) | 8.7894 (4) | 8.3787 (4) | 342.00 (3) |
383 | 4.6453 (2) | 8.7884 (5) | 8.3782 (4) | 342.04 (3) |
413 | 4.6462 (2) | 8.7860 (5) | 8.3794 (5) | 342.06 (3) |
443 | 4.6461 (2) | 8.7861 (4) | 8.3822 (5) | 342.17 (3) |
473 | 4.6448 (3) | 8.7869 (4) | 8.3892 (5) | 342.39 (3) |
503 | 4.6453 (2) | 8.7889 (4) | 8.3888 (5) | 342.49 (3) |
533 | 4.6480 (3) | 8.7883 (5) | 8.3863 (6) | 342.56 (4) |
563 | 4.6488 (3) | 8.7936 (4) | 8.3825 (5) | 342.67 (3) |
593 | 4.6488 (3) | 8.7942 (6) | 8.3868 (6) | 342.87 (4) |
623 | 4.6476 (3) | 8.7984 (6) | 8.3893 (5) | 343.05 (4) |
653 | 4.6487 (3) | 8.7991 (5) | 8.3896 (6) | 343.17 (4) |
683 | 4.6506 (3) | 8.8000 (7) | 8.3891 (7) | 343.33 (5) |
713 | 4.6506 (3) | 8.8017 (6) | 8.3921 (6) | 343.51 (4) |
Samples | P (GPa) | T (K) | K0 (GPa) | K’0 | α(10−5/K) at 300 K | Methods | Pressure Medium | References |
---|---|---|---|---|---|---|---|---|
Al2.00Si1.05O4.00(OH0.26F1.75) | 10.55 | 300 | 164 (2) | 2.9 (4) | — | SC-XRD a | methanol: ethanol: water (16:3:1) | Gatta et al. (2006) [30] |
Al2.00Si1.05O4.00(OH0.26F1.75) | 45 | 300 | 158 (4) | 3.3 (3) | — | SC-XRD | Neon | Gatta et al. (2014) [32] |
Al2SiO4(OD1.45,OH0.55)Σ2.0 | 7.5 | 300 | 145 (4) | 4 (fixed) | — | NPD c | methanol: ethanol (4:1) | Komatsu et al. (2008) [33] |
Al2.01SiO4F1.57(OH)0.43 | 6.2 | 300 | 154 (2) | 4 (fixed) | — | SC-XRD | methanol: ethanol: water (16:3:1) | Komatsu et al. (2003) [34] |
Al2.01SiO4F1.57(OH)0.43 | 0.0001 | 1173 | — | — | 2.0 (1) | PC-XRD b | — | Komatsu et al. (2003) [34] |
Al2SiO4(OH)2 | 38.6 | 300 | 166.4 (6) | 4.03 (4) | — | FPS d | — | Mookherjee et al. (2016) [35] |
Al2SiO4F(OH) | 50 | 300 | 165 (3) | 3.4 (4) | — | FPS&QMA e | — | Ulian et al. (2017) [36] |
Al1.935[(Si0.935Al0.065) O4.000](OH0.408F1.592) | 13.4 | 300 | 172 (3) | 1.3 (4) | — | SC-XRD | Neon | This study |
Al1.935[(Si0.935Al0.065) O4.000](OH0.408F1.592) | 13.4 | 300 | 155 (2) | 4 (fixed) | — | SC-XRD | Neon | This study |
Al1.935[(Si0.935Al0.065) O4.000](OH0.408F1.592) | 0.0001 | 713 | — | — | 1.9 (1) | PC-XRD | — | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Xu, J.; Chen, C.; Li, B.; Ye, Z.; Chen, W.; Kuang, Y.; Fan, D.; Zhou, W.; Ma, M. Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure. Minerals 2020, 10, 780. https://doi.org/10.3390/min10090780
Huang S, Xu J, Chen C, Li B, Ye Z, Chen W, Kuang Y, Fan D, Zhou W, Ma M. Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure. Minerals. 2020; 10(9):780. https://doi.org/10.3390/min10090780
Chicago/Turabian StyleHuang, Shijie, Jingui Xu, Chunfa Chen, Bo Li, Zhilin Ye, Wei Chen, Yunqian Kuang, Dawei Fan, Wenge Zhou, and Maining Ma. 2020. "Topaz, a Potential Volatile-Carrier in Cold Subduction Zone: Constraint from Synchrotron X-ray Diffraction and Raman Spectroscopy at High Temperature and High Pressure" Minerals 10, no. 9: 780. https://doi.org/10.3390/min10090780