Contribution to the Mineral Chemistry of the Proterozoic Aravalli Mafic Meta-Volcanic Rocks from Rajasthan, NW India
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Field Occurrence
3.2. Mineral Chemistry of the Suspect Pillow Lava
3.2.1. Amphibole
3.2.2. Pyroxene
3.2.3. Feldspar
3.2.4. Chlorite
3.2.5. Ilmenite
3.3. Geothermo-Barometers
3.4. Geochemistry of Aravalli Pillow Lava
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Wit, M.J.; Ashwal, L.D. Greenstone belts: What are they? South. Afr. J. Geol. 1995, 98, 505–520. [Google Scholar]
- Kerrich, R.; Polat, A.; Wyman, D.; Hollings, P. Trace element systematics of Mg to Fe–tholeiitic basalt suites of the Superior Province: Implications for Archean mantle reservoirs and greenstone belt genesis. Lithos 1999, 46, 163–187. [Google Scholar] [CrossRef]
- Polat, A. Growth of Archean continental crust in oceanic island arcs. Geology 2012, 40, 383–384. [Google Scholar] [CrossRef]
- Condie, K.C. TTG and adakites: Are they both slab melts? Lithos 2005, 80, 33–44. [Google Scholar] [CrossRef]
- Condie, K.C.; Kröner, A. The building blocks of continental crust: Evidence for a major change in the tectonic setting of continental growth at the end of the Archean. Gondwana Res. 2013, 23, 394–402. [Google Scholar] [CrossRef]
- Tewari, H.C.; Prasad, B.R.; Kumar, P. Structure and Tectonics of the Indian Continental Crust and Its Adjoining Region: Deep Seismic Studies, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 57–72. [Google Scholar]
- Fareeduddin; Banerjee, D.M. Aravalli craton and its mobile belts: An update. Episodes 2020, 43, 88–108. [Google Scholar] [CrossRef]
- Ahmad, T.; Rajamani, V. Geochemistry and petrogenesis of the basal Aravalli Volcanics near Nathdwara, Rajasthan, India. Precambrian Res. 1991, 49, 185–204. [Google Scholar] [CrossRef]
- Malviya, V.P.; Arima, M.; Pati, J.K.; Kaneko, Y. Petrology and Geochemistry of metamorphosed basaltic pillow lava and basaltic komatiite in the Mauranipur area: Subduction related volcanism in the Archean Buldenkhand Craton, central India. J. Miner. Petrol. Sci. 2006, 102, 191–217. [Google Scholar] [CrossRef]
- Ahmad, T.; Tarney, J. Geochemistry and petrogenesis of Late Archaean Aravalli Volcanics, basement enclaves and granitoids, Rajasthan. Precambrian Res. 1994, 65, 1–23. [Google Scholar] [CrossRef]
- Gopalan, K.; Macdaugall, J.D.; Roy, A.B.; Murali, A.V. Sm-Nd evidence for 3.3 Ga old rock in Rajasthan, north-western India. Precambrian Res. 1990, 48, 287–297. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Goswami, J.N. An ion-probe single zircon 207Pb/206Pb age from Mewar Gneiss at Jhamarkotra, Rajasthan. Geochim. Cosmochim. Acta 1994, 58, 2135–2141. [Google Scholar] [CrossRef]
- Roy, A.B.; Kröner, A. Single zircon evaporation ages constraining the growth of the Archaean Aravalli craton, northwestern Indian shield. Geol. Mag. 1996, 133, 333–342. [Google Scholar] [CrossRef]
- Roy, A.B.; Kröner, A.; Laul, V. Detrital zircons constraining basement age in a late Archaean greenstone belt of south-eastern Rajasthan, India. Curr. Sci. 2001, 81, 407–410. [Google Scholar]
- Heron, A.M. Geology of Central Rajputana. Geol. Surv. India. Mem. 1953, 79, 389. [Google Scholar]
- Ahmad, T.; Dragusanu, C.; Tanaka, T. Provenance of Proterozoic Basal Aravalli mafic volcanic rocks from Rajasthan, Northwestern India: Nd isotopes evidence for enriched mantle reservoirs. Precambrian Res. 2008, 162, 150–159. [Google Scholar] [CrossRef]
- Ahmad, T.; Deb, M.; Tarney, J.; Raza, M. Proterozoic mafic volcanism in the Aravalli-Delhi Orogen, north-western India: Geochemistry and tectonic framework. J. Geol. Soc. India 2008, 72, 93–111. [Google Scholar]
- Deb, M.; Sarkar, S.C. Proterozoic tectonic evolution and metallogenesis in the Aravalli–Delhi orogenic Complex, Northwestern India. Precambrian Res. 1990, 46, 115–137. [Google Scholar] [CrossRef]
- Naha, K.; Halyburton, R.V. Early Precambrian stratigraphy of central and southern Rajasthan. Precambrian Res. 1974, 1, 55–73. [Google Scholar] [CrossRef]
- Sugden, T.J.; Deb, M.; Windley, B.F. The tectonic setting of mineralisation in the Proterozoic Aravalli Delhi Orogenic belt, NW India. In Developments in Precambrian Geology; Elsevier: Amsterdam, The Netherlands, 1990; Volume 8, pp. 367–390. [Google Scholar] [CrossRef]
- Shore, M.; Fowler, A.D. The origin of spinifex texture in komatiites. Nature 1999, 397, 691–694. [Google Scholar] [CrossRef]
- Bouquain, S.; Arndt, N.T.; Faure, F.; Libourel, G. An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient: Application to komatiites. J. Geophys. Res. Solid Earth 2014, 5, 641–650. [Google Scholar] [CrossRef][Green Version]
- Hawthorne, F.C.; Oberti, R.; Harlow, G.E.; Maresch, W.V.; Martin, R.F.; Schumacher, J.C.; Welch, M.D. Nomenclature of the amphibole supergroup. Am. Mineral. 2012, 97, 2031–2048. [Google Scholar] [CrossRef]
- Morimoto, N. Nomenclature of pyroxenes. Mineral. J. 1989, 14, 198–221. [Google Scholar] [CrossRef]
- Hey, M.H. A new review of the chlorites. Mineral. Mag. 1954, 30, 277–292. [Google Scholar] [CrossRef]
- Tindle, A.G. Mineral Recalculation Software of Chlorite (Chlorite.xls). Available online: http://www.open.ac.uk/earth-research/tindle/AGTWebPages/AGTSoft.html (accessed on 30 March 2020).
- Cassidy, K.F.; Groves, D.I.; Binns, R.A. Manganoan ilmenite formed during regional metamorphism of Archean mafic and ultramafic rocks from Western Australia. Can. Mineral. 1988, 26, 999–1012. [Google Scholar]
- Blundy, J.D.; Holland, T.J. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contrib. Mineral. Petr. 1990, 104, 208–224. [Google Scholar] [CrossRef]
- Otten, M.T. The origin of brown hornblende in the Artfjället gabbro and dolerites. Contrib. Mineral. Petr. 1984, 86, 189–199. [Google Scholar] [CrossRef]
- Hammarstrom, J.M.; Zen, E.A. Aluminum in hornblende: An empirical igneous geobarometer. Am. Mineral. 1986, 71, 1297–1313. [Google Scholar]
- Hollister, L.S.; Grissom, G.C.; Peters, E.K.; Stowell, H.H.; Sisson, V.B. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am. Mineral. 1987, 72, 231–239. [Google Scholar]
- Mutch, E.J.F.; Blundy, J.D.; Tattich, B.C.; Cooper, F.J.; Brooker, R.A. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib. Mineral. Petr. 2016, 171, 85. [Google Scholar] [CrossRef]
- Krawczynski, M.J.; Grove, T.L.; Behrens, H. Amphibole stability in primitive arc magmas: Effects of temperature, H2O content, and oxygen fugacity. Contrib. Mineral. Petrol. 2012, 164, 317–339. [Google Scholar] [CrossRef]
- Chivas, A.R. Geochemical evidence for magmatic fluids in porphyry copper mineralization. Contrib. Mineral. Petrol. 1982, 78, 389–403. [Google Scholar] [CrossRef]
- Wang, Z.M.; Han, C.M.; Xiao, W.J.; Su, B.X.; Ding, J.X.; Song, S.H. Geochemical and zircon U-Pb and Lu-Hf isotopic constraints on the origin of supracrustal rocks from the mid-Qilian terrane: A comparison between supracrustal rocks on the two sides of the eastern segment of the Altyn Tagh Fault. Precambrian Res. 2017, 294, 284–306. [Google Scholar] [CrossRef]
- Xue, Z.J.; Bai, R.X.; Chen, W. Genetic Mineralogy, 1st ed.; University of Geosciences Press: Beijing, China, 1990; pp. 1–161. (In Chinese) [Google Scholar]
- Chen, G.Y.; Sun, D.S.; Yin, H.A. Genetic Mineralogy and Prospecting Mineralogy, 1st ed.; University of Chongqing Publishing House: Chongqing, China, 1987; pp. 1–872. (In Chinese) [Google Scholar]
- Zang, W.; Fyfe, W.S. Chloritization of the hydrothermally altered bedrock at the Igarape Bahia gold deposit, Carajas, Brasil. Miner. Deposita 1995, 30, 30–38. [Google Scholar] [CrossRef]
- Kranidiotis, P.; MacLean, W.H. Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ. Geol. 1987, 82, 1898–1911. [Google Scholar] [CrossRef]
- Cathelineau, M.; Nieva, D. A chlorite solid solution geothermometer. Contrib. Mineral. Petr. 1985, 91, 235–244. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Jensen, L.S. A new cation plot for classifying subalkalic volcanic rocks. In Ontario Division Mines, Miscellaneous Paper; Ministry of Natural Resources: Toronto, Canada, 1976; pp. 1–21. [Google Scholar]
- Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry, 1st ed.; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Ahmad, T.; Tarney, J. Geochemistry and petrogenesis of Garhwal volcanics: Implications for evolution of the north Indian lithosphere. Precambrian Res. 1991, 50, 69–88. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petr. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Condie, K.C. Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 1999, 46, 95–101. [Google Scholar] [CrossRef]
- Thompson, R.N.; Morrison, M.A.; Dickin, A.P.; Hendry, G.L. Continental flood basalt … Arachnids rule OK? In Continental Basalts and Mantle Xenoliths, 1st ed.; Hawkesworth, C.J., Morry, M.J., Eds.; Shiva: Nantwich, UK, 1983; pp. 158–185. [Google Scholar]
- Weaver, B.L.; Tarney, J. Chemistry of the sub-continental mantle: Inferences from Archean and Proterozoic dykes and continental flood basalts. In Continental Basalts and Mantle Xenoliths, 1st ed.; Hawkesworth, C.J., Morry, M.J., Eds.; Shiva: Nantwich, UK, 1983; pp. 209–229. [Google Scholar]
- Dupuy, C.; Dostal, J. Trace element geochemistry of some continental tholeiites. Earth Planet. Sci. Lett. 1984, 67, 61–69. [Google Scholar] [CrossRef]
- Parman, S.W.; Dann, J.C.; Grove, T.L.; De Wit, M.J. Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet. Sci. Lett. 1997, 150, 303–323. [Google Scholar] [CrossRef]
- Parman, S.W.; Grove, T.L. Komatiites in the plume debate. Geol. Soc. Am. Spec. Pap. 2005, 388, 249–256. [Google Scholar]
- Viljonen, M.J.; Viljonen, R.P. The geology and geochemistry of the lower ultramafic unit of the Onverwacht group and proposed new class of igneous rocks. Spec. Publ. Geol. Soc. S. Afr. 1969, 2, 55–85. [Google Scholar]
- Arndt, N.T.; Nisbet, E.G. Komatiites. What is 350 a komatiite. In Komatiites, 1st ed.; Arndt, N.T., Nisbet, E.G., Eds.; George Allen & Unwin: London, UK, 1982; pp. 19–28. [Google Scholar]
- Arndt, N.T.; Lesher, C.M.; Barnes, S.J. Komatiite, 1st ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 1–196. [Google Scholar]
- Howard, H.M.; Werner, M.; Smithies, R.H.; Evins, P.M.; Kirkland, C.L.; Kelsey, D.E.; Hand, M.; Collins, A.; Pirajno, F.; Wingate, M.T.D.; et al. The Geology of the West Musgrave Province and the Bentley Supergroup—A Field Guide; Geological Survey of Western Australia: Adelaide, Australia, 2011; pp. 1–125. [Google Scholar]
- Lowrey, J.R.; Ivanic, T.J.; Wyman, D.A.; Roberts, M.P. Platy pyroxene: New insights into Spinifex texture. J. Petrol. 2017, 58, 1671–1700. [Google Scholar] [CrossRef]
- Faure, F.; Arndt, N.; Libourel, G. Formation of spinifex texture in komatiites: An experimental study. J. Petrol. 2006, 47, 1591–1610. [Google Scholar] [CrossRef]
- Staude, S.; Jones, T.J.; Markl, G. The textures, formation and dynamics of rare high-MgO komatiite pillow lavas. Precambrian Res. 2020, 343. [Google Scholar] [CrossRef]
- White, R.; McKenzie, D. Magmatism at rift zones: The generation of volcanic continental margins and flood basalts. J. Geoph. Res. 1989, 94, 7685–7729. [Google Scholar] [CrossRef]
Sample | AR-6C | Tholeiites (n = 10) | Komat. Basalts (n = 6) | Komatiites (n = 6) | |||
---|---|---|---|---|---|---|---|
Average | SD* | Average | SD* | Average | SD* | ||
Oxides wt.% | |||||||
SiO2 | 45.06 | 52.96 | 3.57 | 53.62 | 1.26 | 52.15 | 1.96 |
TiO2 | 1.26 | 1.46 | 0.62 | 1.13 | 0.28 | 0.46 | 0.35 |
Al2O3 | 13.56 | 13.11 | 1.17 | 9.33 | 2.60 | 5.20 | 1.27 |
Fe2O3 tot | 17.37 | 13.89 | 2.99 | 12.79 | 0.75 | 10.78 | 1.64 |
MnO | 0.33 | 0.21 | 0.04 | 0.25 | 0.06 | 0.24 | 0.06 |
MgO | 11.03 | 6.29 | 1.35 | 11.25 | 2.36 | 21.08 | 1.03 |
CaO | 6.85 | 7.81 | 1.79 | 8.90 | 0.98 | 10.21 | 0.99 |
Na2O | 1.04 | 3.02 | 1.07 | 2.22 | 1.33 | 0.33 | 0.14 |
K2O | 0.19 | 0.97 | 0.78 | 0.21 | 0.12 | 0.06 | 0.03 |
P2O5 | 0.19 | 0.15 | 0.06 | 0.12 | 0.02 | 0.05 | 0.03 |
LOI | 2.96 | 1.48 | 1.05 | 1.20 | 0.73 | 3.09 | 0.76 |
Elements ppm | |||||||
Ba | 10 | 251 | 186 | 36 | 21 | 5 | 4 |
Rb | 12 | 30 | 23 | 7 | 6 | 3 | 1 |
Sr | 65 | 169 | 98 | 77 | 47 | 12 | 9 |
Ga | 23 | 23 | 4 | 12 | 3 | 11 | 2 |
Nb | 7 | 7 | 3 | 7 | 3 | 4 | 3 |
Zr | 144 | 146 | 37 | 110 | 31 | 50 | 30 |
Cr | 308 | 256 | 258 | 1078 | 643 | 2748 | 634 |
Ni | 174 | 99 | 47 | 318 | 206 | 1199 | 307 |
Zn | 305 | 152 | 61 | 152 | 45 | 123 | 22 |
Y | 12 | 27 | 10 | 18 | 3 | 13 | 7 |
Th | 4 | 6 | 2 | 6 | 4 | 7 | 9 |
La | 12.5 | 19.4 | 6.9 | 17.1 | 8.7 | 4.8 | 3.7 |
Ce | 28.0 | 38.8 | 13.4 | 38.5 | 18.4 | 12.6 | 9.8 |
Pr | 3.4 | 4.9 | 1.6 | 4.7 | 2.0 | 1.4 | 1.0 |
Nd | 14.8 | 19.5 | 6.6 | 18.1 | 6.4 | 6.0 | 3.7 |
Sm | 3.4 | 4.8 | 1.4 | 4.2 | 1.0 | 1.7 | 0.9 |
Eu | 1.2 | 1.5 | 0.5 | 1.3 | 0.3 | 0.5 | 0.3 |
Gd | 3.6 | 5.1 | 1.4 | 4.0 | 0.7 | 2.0 | 0.9 |
Dy | 2.9 | 4.8 | 1.4 | 3.3 | 0.4 | 2.0 | 0.9 |
Er | 1.4 | 2.7 | 1.3 | 1.6 | 0.3 | 1.1 | 0.5 |
Yb | 1.1 | 2.3 | 1.1 | 1.3 | 0.2 | 1.3 | 0.9 |
Lu | 0.2 | 0.3 | 0.2 | 0.2 | 0.0 | 0.2 | 0.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiszniewska, J.; Grabarczyk, A.; Krzemińska, E.; Ahmad, T. Contribution to the Mineral Chemistry of the Proterozoic Aravalli Mafic Meta-Volcanic Rocks from Rajasthan, NW India. Minerals 2020, 10, 638. https://doi.org/10.3390/min10070638
Wiszniewska J, Grabarczyk A, Krzemińska E, Ahmad T. Contribution to the Mineral Chemistry of the Proterozoic Aravalli Mafic Meta-Volcanic Rocks from Rajasthan, NW India. Minerals. 2020; 10(7):638. https://doi.org/10.3390/min10070638
Chicago/Turabian StyleWiszniewska, Janina, Anna Grabarczyk, Ewa Krzemińska, and Talat Ahmad. 2020. "Contribution to the Mineral Chemistry of the Proterozoic Aravalli Mafic Meta-Volcanic Rocks from Rajasthan, NW India" Minerals 10, no. 7: 638. https://doi.org/10.3390/min10070638
APA StyleWiszniewska, J., Grabarczyk, A., Krzemińska, E., & Ahmad, T. (2020). Contribution to the Mineral Chemistry of the Proterozoic Aravalli Mafic Meta-Volcanic Rocks from Rajasthan, NW India. Minerals, 10(7), 638. https://doi.org/10.3390/min10070638