The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Analytical Methods
3. Results
3.1. XPS Results
3.2. Chemical and Mineralogical Features of Monazite-Ce (SEM and RM)
3.3. Atomic Structure of Radiogenic Pb in Monazite (TEM)
4. Discussion
4.1. The Crystallinity of RW-1 Monazite-Ce
4.2. The Chemical State of Radiogenic Pb
4.3. The Nanoscale Distribution of Pb and Th
5. Conclusions
- (1)
- The TEM and STEM-HAADF data demonstrated that the studied natural monazite is well crystalline in most areas. Meanwhile, some distorted lattices induced from self-radiation were also observed, which resulted in a broadening band of RM analysis.
- (2)
- The radiogenic Pb exists as Pb2+ in a current state.
- (3)
- The STEM-HAADF data revealed that Pb atom substitute for the Ce atoms within the monazite crystal lattice. A normalized intensity mapping was developed for the STEM-HAADF images to better visualize the distribution of Pb and Th.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parrish, R.R.; Tirrul, R. U-Pb age of the Baltoro granite, northwest Himalaya, and implications for monazite U-Pb systematics. Geology 1989, 17, 1076–1079. [Google Scholar] [CrossRef]
- Harrison, T.M.; Catlos, E.J.; Montel, J.M. U-Th-Pb Dating of Phosphate Minerals. Rev. Mineral. Geochem. 2002, 48, 524–558. [Google Scholar] [CrossRef]
- Li, Q.L.; Li, X.H.; Lan, Z.W.; Guo, C.L. Monazite and xenotime U–Th–Pb geochronology by ion microprobe dating highly fractionated granites at Xihuashan tungsten mine, SE China. Contrib. Mineral. Petr. 2013, 166, 65–80. [Google Scholar] [CrossRef]
- Meldrum, A.; Boatner, L.A.; Weber, W.J.; Ewing, R.C. Radiation damage in zircon and monazite. Geochim. Cosmochim. Acta 1998, 62, 2509–2520. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Wirth, R.; Deutsch, A.; Schärer, U. Microstructure of 24-1928 Ma concordant monazites; implications for geochronology and nuclear waste deposits. Geochim. Cosmochim. Acta 2004, 68, 2517–2527. [Google Scholar] [CrossRef]
- Vance, E.R.; Zhang, Y.; McLeod, T.; Davis, J. Actinide valences in xenotime and monazite. J. Nucl. Mater. 2011, 409, 221–224. [Google Scholar] [CrossRef]
- Schärer, U.; Xu, R.H.; Allègre, C.J. U-(Th)-Pb systematics and ages of Himalayan leucogranites, South Tibet. Earth. Plan. Sci. Lett. 1986, 77, 35–48. [Google Scholar] [CrossRef]
- Smith, H.A.; Barreiro, B. Monazite U-Pb dating of staurolite grade metamorphism in pelitic schists. Contrib. Mineral. Petr. 1990, 105, 602–615. [Google Scholar] [CrossRef]
- Cocherie, A.; Legendre, O.; Peucat, J.J.; Kouamelan, A.N. Geochronology of polygenetic monazites constrained by in situ electron microprobe Th-U-total lead determination implications for lead behaviour in monazite. Geochim. Cosmochim. Ac. 1998, 62, 2475–2497. [Google Scholar] [CrossRef]
- Bingen, B.; Breemen, O.V. U-Pb monazite ages in amphibolite-to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contrib. Mineral. Petr. 1998, 132, 336–353. [Google Scholar] [CrossRef]
- Asami, M.; Suzuki, K.; Grew, E.S. Monazite and Zircon Dating by the Chemical Th-U-Total Pb Isochron Method (CHIME) from Alasheyev Bight to the Sør Rondane Mountains, East Antarctica: A Reconnaissance Study of the Mozambique Suture in East Queen Maud Land. J. Geol. 2005, 113, 59–82. [Google Scholar] [CrossRef]
- Goncalves, P.; Christian, N.; Montel, J.M. Petrology and in situ U-Th-Pb Monazite Geochronology of Ultrahigh-Temperature Metamorphism from the Andriamena Mafic Unit, North-Central Madagascar. Significance of a Petrographical P-T Path in a Polymetamorphic Context. J. Petrol. 2004, 45, 1923–1957. [Google Scholar] [CrossRef]
- Hawkins, D.P.; Bowring, S.A. U-Pb systematics of monazite and xenotime case: Studies from the Paleoproterozoic of the Grand Canyon, Arizona. Contrib. Mineral. Petr. 1997, 127, 87–103. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Goncalves, P.; Wirth, R.; Deutsch, A. Transmission electron microscope study of polyphase and discordant monazites: Site-specific specimen preparation using the focused ion beam technique. Geology 2003, 3, 973–976. [Google Scholar] [CrossRef]
- Fougerouse, D.; Reddy, S.M.; Saxey, D.W.; Erickson, T.M.; Kirkland, C.L.; Rickard, W.D.A.; Seydoux-Guillaume, A.M.; Clark, C.; Buick, I.S. Nanoscale distribution of Pb in monazite revealed by atom probe microscopy. Chem. Geol. 2018, 479, 251–258. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Fougerouse, D.; Laurent, A.T.; Gardés, E.; Reddy, S.M.; Saxey, D.W. Nanoscale resetting of the Th/Pb system in an isotopically-closed monazite grain: A combined atom probe and transmission electron microscopy study. Geosci. Front. 2019, 10, 65–76. [Google Scholar] [CrossRef]
- Catlos, E.J.; Miller, N.R. Ion microprobe 208Th-208Pb ages from high common Pb monazite, Morefield Mine, Amelia County, Virginia: Implications for Alleghanian tectonics. Am. J. Sci. 2016, 316, 470–503. [Google Scholar] [CrossRef]
- Kramers, J.; Frei, R.; Newville, M.; Kober, B.; Villa, I. On the valency state of radiogenic lead in zircon and its consequences. Chem. Geol. 2009, 261, 4–11. [Google Scholar] [CrossRef]
- Tanaka, K.; Takahashi, Y.; Horie, K.; Shimizu, H.; Murakami, T. Determination of the oxidation state of radiogenic Pb in natural zircon using X-ray absorption near-edge structure. Phys. Chem. Miner. 2010, 37, 249–254. [Google Scholar] [CrossRef]
- Dubrail, J.; Farges, F.; Gautron, L.; Harfouche, M.; Borca, C.; Grolimund, D. Pb in naturally irradiated monazites and zircons. J. Phys.: Conf. Ser. 2009, 190. [Google Scholar] [CrossRef]
- Podor, R.; Cuney, M. Experimental study of Th-bearing LaPO4 (780 °C, 200 MPa): Implications for monazite and actinide orthophosphate stability. Am. Mineral. 1997, 82, 765–771. [Google Scholar] [CrossRef]
- Ni, Y.X.; Hughes, J.M.; Mariano, A.N. Crystal chemistry of the monazite and xenotime structures. Am. Mineral. 1995, 80, 21–26. [Google Scholar] [CrossRef]
- Donovan, J.J.; Hanchar, J.M.; Picolli, P.M.; Schrier, M.D.; Boatner, L.A.; Jarosewich, E. A re-examination of the rare-earth-element orthophosphate standards in use for electron-microprobe analysis. Can. Mineral. 2003, 41, 221–232. [Google Scholar] [CrossRef]
- Taylor, B.E.; Friedrichsen, H. Oxygen and hydrogen isotope disequilibria in the Landsverk I pegmatite, Evje, southem Norway: Evidence for anomalous hydrothermal fluids. Nor. Geogr. Tidsskr. 1983, 63, 199–209. [Google Scholar]
- Ling, X.X.; Huyskens, M.H.; Li, Q.L.; Yin, Q.Z.; Werner, R.; Liu, Y.; Tang, G.Q.; Yang, Y.N.; Li, X.H. Monazite RW-1: A homogenous natural reference material for SIMS U–Pb and Th–Pb isotopic analysis. Miner. Petrol. 2016, 111, 163–172. [Google Scholar] [CrossRef]
- Wu, L.G.; Li, X.H.; Ling, X.X.; Yang, Y.H.; Li, C.F.; Li, Y.L.; Mao, Q.; Li, Q.L.; Putlitz, B. Further Characterization of the RW-1 Monazite: A New Working Reference Material for Oxygen and Neodymium Isotopic Microanalysis. Minerals 2019, 9, 583. [Google Scholar] [CrossRef]
- Ivanova, O.P.; Vasilyev, L.A.; Naumkin, A.V.; Kantsel, V.V. XPS studies of natural monazite and relative compounds under ion bombardment. Appl. Surf. Sci. 1993, 72, 307–312. [Google Scholar] [CrossRef]
- Glorieux, B.; Berjoan, R.; Matecki, M.; Kammouni, A.; Perarnau, D. XPS analyses of lanthanides phosphates. Appl. Surf. Sci. 2007, 253, 3349–3359. [Google Scholar] [CrossRef]
- Apostol, N.G.; Stoflea, L.E.; Lungu, G.A.; Tache, C.A.; Popescu, D.G.; Pintilie, L.; Teodorescu, C.M. Band bending at free Pb(Zr,Ti)O3 surfaces analyzed by X-ray photoelectron spectroscopy. Mater. Sci. Eng. B 2013, 178, 1317–1322. [Google Scholar] [CrossRef]
- Rafiuddin, M.R.; Mueller, E.; Grosvenor, A.P. X-ray Spectroscopic Study of the Electronic Structure of Monazite- and Xenotime-Type Rare-Earth Phosphates. J. Phys. Chem. C 2014, 118, 18000–18009. [Google Scholar] [CrossRef]
- Rondon, S.; Sherwood, P.M.A. Core Level and Valence Band Spectra of PbO by XPS. Surf. Sci. Spectra 1998, 5, 97–103. [Google Scholar] [CrossRef]
- Rondon, S.; Sherwood, P.M.A. Core Level and Valence Band Spectra of Pb3O4 by XPS. Surf. Sci. Spectra 1998, 5, 90–96. [Google Scholar] [CrossRef]
- Rondon, S.; Sherwood, P.M.A. Core Level and Valence Band Spectra of PbO2 by XPS. Surf. Sci. Spectra 1998, 5, 104–110. [Google Scholar] [CrossRef]
- Richter, D.K.; Görgen, P.; Götte, T. Monazite cathodoluminescence—A new tool for heavy mineral analysis of siliciclastic sedimentary rocks. Sediment. Geol. 2008, 209, 36–41. [Google Scholar] [CrossRef]
- Vaggelli, G.; Cossio, R.; Petrelli, M.; Rossetti, P. Combined cathodoluminescence spectroscopy, electron microprobe and laser ablation ICP mass spectrometry analysis: An attempt to correlate luminescence and chemical composition of monazite. Microchim. Acta 2008, 161, 313–321. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Y.; Tchouankoue, J.P.; Liu, C.Z.; Li, J.; Ling, X.X.; Tang, G.Q.; Liu, Y. Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints. Precambrian Res. 2017, 294, 307–321. [Google Scholar] [CrossRef]
- Ruschel, K.; Nasdala, L.; Kronz, A.; Hanchar, J.M.; Többens, D.M.; Škoda, R.; Finger, F.; Möller, A. A Raman spectroscopic study on the structural disorder of monazite-(Ce). Miner. Petrol. 2012, 105, 41–55. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Wirth, R.; Nasdala, L.; Gottschalk, M.; Montel, J.M.; Heinrich, W. An XRD, TEM and Raman study of experimentally annealed natural monazite. Phys. Chem. Miner. 2002, 29, 240–253. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Jesson, D.E. Atomic resolution Z-contrast imaging of interfaces. Acta metall. Mater. 1992, 40, S149–S159. [Google Scholar] [CrossRef]
- Pennycook, S.J.; Boatner, L.A. Chemically Sensitive Structure-Imaging with a Scanning Transmission Electron Microscope. Nature 1988, 336, 565–567. [Google Scholar] [CrossRef]
- Utsunomiya, S.; Palenik, C.S.; Valley, J.W.; Cavosie, A.J.; Wilde, S.A.; Ewing, R.C. Nanoscale occurrence of Pb in an Archean zircon. Geochim. Cosmochim. Ac. 2004, 68, 4679–4686. [Google Scholar] [CrossRef]
- Weber, W.J. Radiation-induced defects and amorphization in zircon. J. Mater. Res. 1990, 5. [Google Scholar] [CrossRef]
- Murakami, T.; Chakoumakos, B.C.; Ewing, R.C.; Lumpkin, G.R.; Weber, W.J. Alpha-decay event damage in zircon. Am. Mineral. 1991, 76. [Google Scholar] [CrossRef]
- Omel’yanenko, B.I.; Livshits, T.S.; Yudintsev, S.V.; Nikonov, B.S. Natural and artificial minerals as matrices for immobilization of actinides. Geol. Ore Depos. 2007, 49, 173–193. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B.; Grove, M.; Harrison, T.M. Pb diffusion in monazite: A combined RBS/SIMS study. Geochim. Cosmochim. Ac. 2004, 68, 829–840. [Google Scholar] [CrossRef]
- Clavier, N.; Podor, R.; Dacheux, N. Crystal chemistry of the monazite structure. J. Eur. Ceram. Soc. 2011, 31, 941–976. [Google Scholar] [CrossRef]
- Catlos, E.J. Versatile Monazite: Resolving geological records and solving challenges in materials science: Generalizations about monazite: Implications for geochronologic studies. Am. Mineral. 2013, 98, 819–832. [Google Scholar] [CrossRef]
- Boatner, L.A.; Sales, B.C. Radioactive Waste Forms for the Future: Monazite; Elsevier Science Publishers: Amsterdam, The Netherlanders, 1988; pp. 495–564. [Google Scholar]
- Meldrum, A.; Boatner, L.A.; Ewing, R.C. Electron-irradiation-induced nucleation and growth in amorphous LaPO4, ScPO4, and zircon. J. Mater. Res. 1997, 12, 1816–1827. [Google Scholar] [CrossRef]
- Deschanels, X.; Seydoux-Guillaume, A.M.; Magnin, V.; Mesbah, A.; Tribet, M.; Moloney, M.P.; Serruys, Y.; Peuget, S. Swelling induced by alpha decay in monazite and zirconolite ceramics: A XRD and TEM comparative study. J. Nucl. Mater. 2014, 448, 184–194. [Google Scholar] [CrossRef]
- Seydoux-Guillaume, A.M.; Deschanels, X.; Baumier, C.; Neumeier, S.; Weber, W.J.; Peuget, S. Why natural monazite never becomes amorphous: Experimental evidence for alpha self-healing. Am. Mineral. 2018, 103, 824–827. [Google Scholar] [CrossRef]
- Nasdala, L.; GrÖtzschel, R.; Probst, S.; Bleisteiner, B. Irradiation damage in monazite-(Ce): An example to establish the limits of Raman confocality and depth resolution. Can. Mineral. 2010, 48, 351–359. [Google Scholar] [CrossRef]
- Black, L.P.; Fitzgerald, J.D.; Harley, S.L. Pb isotopic composition color and microstructure of monazites from a polymetamorphic rock in Antarctica. Contrib. Mineral. Petr. 1984, 85, 141–148. [Google Scholar] [CrossRef]
- Syverson, D.D.; Etschmann, B.; Liu, W.; Ram, R.; Mei, Y.; Lanzirotti, T.; Mercadier, J.; Brugger, J. Oxidation state and coordination environment of Pb in U-bearing minerals. Geochim. Cosmochim. Ac. 2019, 265, 109–131. [Google Scholar] [CrossRef]
- Mi, J.X.; Shen, J.C.; Liang, J.; Pan, B.M. The Crystal Strueture Refinement of Monazite-(Ce) and Xenotime-(Y). Acta Petrol. Mineral. 1996, 15, 53–59. [Google Scholar]
- Boatner, L.A. Synthesis, Structure, and Properties of Monazite, Pretulite, and Xenotime. Rev. Mineral. Geochem. 2002, 48, 87–121. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.P.; Shen, Z.J.; Li, X.B.; Wang, C.S.; Chen, Y.J.; Li, J.X.; Zhang, J.X.; Zhang, Z.; Zhang, S.B.; et al. Vacancy Structures and Melting Behavior in Rock-Salt GeSbTe. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, W.; Shen, Z.J.; Chen, Y.J.; Li, J.X.; Zhang, S.B.; Zhang, Z.; Wuttig, M.; Mazzarello, R.; Ma, E.; et al. Element-resolved atomic structure imaging of rocksalt Ge2Sb2Te5 phase-change material. Appl. Phys. Lett. 2016, 108, 191902. [Google Scholar] [CrossRef]
B.E. (eV) 1 | Chip1 | Chip2 | PbO | Pb3O4 | PbO2 |
---|---|---|---|---|---|
Pb 4f7/2 | 138.16 | 138.04 | 138.0 | 137.4 | 137.3 |
Pb 4f5/2 | 143.02 | 142.9 | 142.9 | 142.2 | 142.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Li, Q.-L.; Zhang, B.; Wang, P.; Gu, L.-X.; Ling, X.-X.; Fei, C.-H.; Li, J.-H. The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM. Minerals 2020, 10, 504. https://doi.org/10.3390/min10060504
Tang X, Li Q-L, Zhang B, Wang P, Gu L-X, Ling X-X, Fei C-H, Li J-H. The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM. Minerals. 2020; 10(6):504. https://doi.org/10.3390/min10060504
Chicago/Turabian StyleTang, Xu, Qiu-Li Li, Bin Zhang, Peng Wang, Li-Xin Gu, Xiao-Xiao Ling, Chen-Hui Fei, and Jin-Hua Li. 2020. "The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM" Minerals 10, no. 6: 504. https://doi.org/10.3390/min10060504
APA StyleTang, X., Li, Q.-L., Zhang, B., Wang, P., Gu, L.-X., Ling, X.-X., Fei, C.-H., & Li, J.-H. (2020). The Chemical State and Occupancy of Radiogenic Pb, and Crystallinity of RW-1 Monazite Revealed by XPS and TEM. Minerals, 10(6), 504. https://doi.org/10.3390/min10060504