Jianite: Massive Dunite Solely Made of Virtually Pure Forsterite from Ji’an County, Jilin Province, Northeast China
Abstract
1. Introduction
2. Sampling Location and Analytical Methods
3. Results
3.1. Petrography
3.2. Phase Identification
3.3. Chemistry of Minerals
3.4. Water in Olivine
4. Discussion: Jianite and Its Petrogenesis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Walter, M.J. Melting residues of fertile peridotite and the origin of cratonic lithosphere. Spec. Publ. Geochem. Soc. 1999, 6, 225–239. [Google Scholar]
- Bernstein, S.; Kelemen, P.B.; Hanghøj, K. Consistent olivine Mg# in cratonic mantle reflects Archean mantle melting to the exhaustion of orthopyroxene. Geology 2007, 35, 459–462. [Google Scholar]
- Boyd, F.R.; Nixon, P.H. Ultramafic nodules from the Kimberley pipes, South Africa. Geochim. Cosmochim. Acta 1978, 42, 1367–1382. [Google Scholar] [CrossRef]
- Griffin, W.L.; O’Reilly, S.Y.; Ryan, C.G. The composition and origin of sub-continental lithospheric mantle. Spec. Publ. Geochem. Soc. 1999, 6, 13–45. [Google Scholar]
- Fan, W.M.; Zhang, H.F.; Baker, J.; Jarvis, K.E.; Mason, P.R.D.; Menzies, M.A. On and off the north China craton: Where is the Archaean keel? J. Petrol. 2000, 41, 933–950. [Google Scholar] [CrossRef]
- Zheng, J.; O’Reilly, S.Y.; Griffin, W.L.; Lu, F.; Zhang, M.; Pearson, N.J. Relic refractory mantle beneath the eastern North China block: Significance for lithosphere evolution. Lithos 2001, 57, 43–66. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S.; Ling, W.; Liu, Y.; McDonough, W.F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 2004, 77, 609–637. [Google Scholar] [CrossRef]
- Jaques, A.L.; Green, D.H. Anhydrous melting of peridotite at 0–15 Kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol. 1980, 73, 287–310. [Google Scholar] [CrossRef]
- Falloon, T.J.; Green, D.H.; Hatton, C.J.; Harris, K.L. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. J. Petrol. 1988, 29, 1257–1282. [Google Scholar] [CrossRef]
- Barnes, S.J.; Roeder, P.L. The range of spinel compositions in terrestrial mafic and ultramafic rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Liu, X.; O’Neill, H.S.C. The effect of Cr2O3 on the partial melting of spinel lherzolite in the system CaO-MgO-Al2O3-SiO2-Cr2O3 at 1.1 GPa. J. Petrol. 2004, 45, 2261–2286. [Google Scholar] [CrossRef]
- Green, D.H.; Ringwood, A.E. The genesis of basaltic magmas. Contrib. Mineral. Petrol. 1967, 15, 103–190. [Google Scholar] [CrossRef]
- Roeder, P.L.; Emslie, R.F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 1970, 29, 275–289. [Google Scholar] [CrossRef]
- Plechov, P.Y.; Shcherbakov, V.D.; Nekrylov, N.A. Extremely magnesian olivine in igneous rocks. Russ. Geol. Geophys. 2018, 59, 1702–1717. [Google Scholar] [CrossRef]
- Sui, J.; Fan, Q.; Liu, J. Discovery and significance of high-purity forsterite (Fo~98.5) and its dissolution structure in Longgang volcano, Jilin Province. In Proceedings of the 11th Annual Conference of the Chinese Society for Mineralogy, Petrology and Geochemistry, Beijing, China, 27–30 August 2007; p. 37. [Google Scholar]
- Blondes, M.S.; Brandon, M.T.; Reiners, P.W.; Page, F.Z.; Kita, N.T. Generation of forsteritic olivine (Fo99.8) by subsolidus oxidation in basaltic flows. J. Petrol. 2012, 53, 971–984. [Google Scholar] [CrossRef]
- Bai, W.; Fan, Q.; Zhan, Z.; Yan, B.; Yang, J. Crystal structure of forsterite from podiform chromitite in Luobusa ophiolite of Tibet and its implications. Acta Petrol. Mineral. 2001, 20, 1–10. [Google Scholar]
- Owens, B.E. High-temperature contact metamorphism of calc-silicate xenoliths in the Kiglapait Intrusion, Labrador. Am. Mineral. 2000, 85, 1595–1605. [Google Scholar] [CrossRef]
- Wenzel, T.; Baumgartner, L.P.; Konnikov, E.G.; Brugmann, G.E.; Kislov, E.V. Partial melting and assimilation of dolomitic xenoliths by mafic magma: The Ioko-Dovyren intrusion (North Baikal region, Russia). J. Petrol. 2002, 43, 2049–2074. [Google Scholar] [CrossRef]
- Ferry, J.M.; Ushikubo, T.; Valley, J.W. Formation of forsterite by silicification of dolomite during contact metamorphism. J. Petrol. 2011, 52, 1619–1640. [Google Scholar] [CrossRef]
- Arai, S.; Ishimaru, S.; Mizukami, T. Methane and propane micro-inclusions in olivine in titanoclinohumite-bearing dunites from the Sanbagawa high-P metamorphic belt, Japan: Hydrocarbon activity in a subduction zone and Ti mobility. Earth Planet. Sci. Lett. 2012, 353–354, 1–11. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, F.; Shi, G.-H.; Wu, F.-Y.; Chen, X.; Jin, Q.-Z.; Su, B.; Guo, S.; Sein, K.; Nyunt, T.T. Magnesium isotope composition of subduction zone fluids as constrained by jadeitites from Myanmar. J. Geophys. Res. 2018, 123, 7566–7585. [Google Scholar] [CrossRef]
- Majumdar, A.S.; Hovelmann, J.; Vollmer, C.; Berndt, J.; Mondal, S.K.; Putnis, A. Formation of Mg-rich olivine pseudomorphs in serpentinized dunite from the Mesoarchean Nuasahi Massif, eastern India: Insights into the evolution of fluid composition at mineral-fluid interface. J. Petrol. 2016, 57, 3–26. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, D.; Liang, Y.; Zou, C.; Zhang, Q.; Bai, L. Geochronology of Ji’an group in Tonghua area, southern Jilin province. J. Earth Sci. 2014, 39, 1487–1499. [Google Scholar]
- Zhou, X.; Di, X.; Lu, X.; Kong, F. Discovery and significance of the ophiolite in Ji’an rock group, southern of Jilin Province. Jilin Geol. 2018, 37, 1–6. [Google Scholar]
- Zhang, W.; Liu, F.; Cai, J.; Liu, C.; Liu, J.; Liu, P.; Liu, L.; Wang, F.; Yang, H. Geochemistry, zircon U-Pb dating and tectonic implications of the Palaeoproterozoic Ji’an and Laoling groups, northeastern Jiao-Liao-Ji Belt, North China Craton. Precambrian Res. 2018, 314, 264–287. [Google Scholar] [CrossRef]
- Meng, E.; Wang, C.-Y.; Li, Z.; Li, Y.-G.; Yang, H.; Cai, J.; Ji, L.; Jin, M.-Q. Palaeoproterozoic metasedimentary rocks of the Ji’an group and their significance for the tectonic evolution of the northern segment of the Jiao–Liao–Ji Belt, North China Craton. Geol. Mag. 2017, 155, 149–173. [Google Scholar] [CrossRef]
- Lu, X. Paleoproterozoic Tectonic Magmatic Event in Tonghua Area. Ph.D. Dissertation, Jilin University, Changchun, China, 15 June 2004. [Google Scholar]
- Liu, L.; Liu, X.; Bao, X.; He, Q.; Yan, W.; Ma, Y.; He, M.; Tao, R.; Zou, R. Si-disordering in MgAl2O4-spinel under high P-T conditions, with implications for Si-Mg disorder in MgAl2O4-ringwoodite. Minerals 2018, 8, 210. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Wei, C.; Slabunov, A.I.; Bader, T. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P-T path of Belomorian eclogites. J. Metamorph. Geol. 2017, 36, 1–22. [Google Scholar] [CrossRef]
- Liu, L.; Ma, Y.; Yan, W.; Liu, X. Trace element partitioning between MgAl2O4-spinel and carbonatitic silicate melt from 3 to 6 GPa, with emphasis on the role of cation order-disorder. Solid Earth Sci. 2019, 4, 43–65. [Google Scholar] [CrossRef]
- Li, X.-W.; Mo, X.-X.; Yu, X.-H.; Ding, Y.; Huang, X.-F.; Wei, P.; He, W.-Y. Petrology and geochemistry of the early mesozoic pyroxene andesites in the Maixiu Area, west Qinling, China: Products of subduction or syn-collision? Lithos 2013, 172–173, 158–174. [Google Scholar] [CrossRef]
- Jochum, K.P.; Weis, U.; Stoll, B.; Kuzmin, D.; Yang, Q.; Raczek, I.; Jacob, D.E.; Stracke, A.; Birbaum, K.; Frick, D.A.; et al. Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand. Geoanal. Res. 2011, 35, 397–429. [Google Scholar] [CrossRef]
- Jackson, S.E. The Application of Nd: YAG Lasers in LA-ICP-MS. In Principles and Applications of Laser Ablation-Mass Spectrometry in the Earth Sciences, 2nd ed.; Sylvester, P., Ed.; Mineralogical Association of Canada: Quebec City, QC, Canada, 2001; Volume 29, pp. 29–45. [Google Scholar]
- Liu, X.; Ma, Y.; He, Q.; He, M. Some IR features of SiO4, and OH in coesite, and its amorphization and dehydration at ambient pressure. J. Asian Earth Sci. 2017, 148, 315–323. [Google Scholar] [CrossRef]
- He, M.; Yan, W.; Chang, Y.; Liu, K.; Liu, X. Fundamental infrared absorption features of α-quartz: An unpolarized single-crystal absorption infrared spectroscopic study. Vib. Spectrosc. 2019, 101, 52–63. [Google Scholar] [CrossRef]
- Liu, X.; O’Neill, H.S.C.; Berry, A.J. The effects of small amounts of H2O, CO2 and Na2O on the partial melting of spinel lherzolite in the system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O at 1.1 GPa. J. Petrol. 2006, 47, 409–434. [Google Scholar] [CrossRef]
- Bowen, N.L.; Tuttle, O.F. The system MgO-SiO2-H2O. Geol. Soc. Am. Bull. 1949, 60, 439–460. [Google Scholar] [CrossRef]
- Evans, B.W. The serpentinite multisystem revisited: Chrysotile is metastable. Inter. Geol. Rev. 2004, 46, 479–506. [Google Scholar] [CrossRef]
- Evans, B.W. Lizardite versus antigorite serpentinite: Magnetite, hydrogen, and life (?). Geology 2010, 38, 879–882. [Google Scholar] [CrossRef]
- Huang, R.; Lin, C.-T.; Sun, W.; Ding, X.; Zhan, W. The production of iron oxide during peridotite serpentinization: Influence of pyroxene. Geosci. Front. 2017, 8, 1311–1321. [Google Scholar] [CrossRef]
- Mohanan, K.; Sharma, S.K.; Bishop, F.C. A Raman spectral study of forsterite-monticellite solid solutions. Am. Mineral. 1993, 78, 42–48. [Google Scholar]
- Ishibashi, H.; Arakawa, M.; Yamamoto, J.; Kagi, H. Precise determination of Mg/Fe ratios applicable to terrestrial olivine samples using Raman spectroscopy. J. Raman Spectrosc. 2012, 43, 331–337. [Google Scholar] [CrossRef]
- Auzende, A.L.; Daniel, L.; Reynard, B.; Lemaire, C.; Guyot, F. High-pressure behaviour of serpentine minerals: A Raman spectroscopic study. Phys. Chem. Mineral. 2004, 31, 267–277. [Google Scholar] [CrossRef]
- Groppo, C.; Rinaudo, C.; Cairo, S.; Gastaldi, D.; Compagnoni, R. Micro-Raman spectroscopy for a quick and reliable identification of serpentine minerals from ultramafics. Eur. J. Mineral. 2006, 18, 319–329. [Google Scholar] [CrossRef]
- Reynard, B.; Wunder, B. High-pressure behavior of synthetic antigorite in the MgO-SiO2-H2O system from Raman spectroscopy. Am. Mineral. 2006, 91, 459–462. [Google Scholar] [CrossRef]
- Rinaudo, C.; Gastaldi, D.; Belluso, E. Characterization of chrysotile, antigorite and lizardite by FT-Raman spectroscopy. Can. Mineral. 2003, 41, 883–890. [Google Scholar] [CrossRef]
- Prencipe, M.; Noel, Y.; Bruno, M.; Dovesi, R. The vibrational spectrum of lizardite-1 T [Mg3Si2O5(OH)4] at the Г point: A contribution from an ab initio periodic B3LPY calculation. Am. Mineral. 2009, 94, 986–994. [Google Scholar] [CrossRef]
- Schwartz, S.; Guillot, S.; Reynard, B.; Lafay, R.; Debret, B.; Nicollet, C.; Lanari, P.; Line Auzende, A. Pressure-temperature estimates of the lizardite/antigorite transition in high pressure serpentinites. Lithos 2013, 178, 197–210. [Google Scholar] [CrossRef]
- Dawson, P.; Hadfield, C.D.; Wilkinson, G.R. The polarized infrared and Raman spectra of Mg(OH)2 and Ca(OH)2. J. Phys. Chem. Solids. 1973, 34, 1217–1225. [Google Scholar] [CrossRef]
- Duffy, T.S.; Meade, C.; Fei, Y.; Mao, H.-K.; Hemley, R.J. High-pressure phase transition in brucite, Mg(OH)2. Am. Mineral. 1995, 80, 222–230. [Google Scholar] [CrossRef]
- Mével, C. Serpentinization of abyssal peridotites at mid-ocean ridges. C. R. Geosci. 2017, 335, 825–852. [Google Scholar] [CrossRef]
- Witt-Eickschen, G.; O’Neill, H.S.C. The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem. Geol. 2005, 221, 65–101. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Gall, L.; Cornell, D.H. Trace-element geochemistry of mantle olivine and application to mantle petrogenesis and geothermobarometry. Chem. Geol. 2010, 270, 196–215. [Google Scholar] [CrossRef]
- Tollan, P.M.E.; O’Neill, H.S.C.; Hermann, J.; Benedictus, A.; Arculus, R.J. Frozen melt–rock reaction in a peridotite xenolith from sub-arc mantle recorded by diffusion of trace elements and water in olivine. Earth Planet. Sci. Lett. 2015, 422, 169–181. [Google Scholar] [CrossRef]
- Straub, S.M.; LaGatta, A.B.; Lillian Martin-Del Pozzo, A.; Langmuir, C.H. Evidence from high-Ni olivines for a hybirdized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem. Geophys. Geosys. 2008, 9, Q03007. [Google Scholar] [CrossRef]
- Su, B.; Chen, Y.; Mao, Q.; Zhang, D.; Jia, L.-H.; Guo, S. Minor elements in olivine inspect the petrogenesis of orogenic peridotites. Lithos 2019, 344–345, 207–216. [Google Scholar] [CrossRef]
- Foley, S.F.; Prelevic, D.; Rehfeldt, T.; Jacob, D.E. Minor and trace elements in olivines as probes into early igneous and mantle melting processes. Earth Planet. Sci. Lett. 2013, 363, 181–191. [Google Scholar] [CrossRef]
- Shea, J.J.; Foley, S.F. Evidence for carbonatite-influenced source assemblage for intraplate basalts from the Buckland Volcanic Province, Queensland, Australia. Minerals 2019, 9, 546. [Google Scholar] [CrossRef]
- Bell, D.R.; Rossman, G.R.; Maldener, J.; Endisch, D.; Rauch, F. Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum. J. Geophys. Res. 2003, 108, 2105. [Google Scholar] [CrossRef]
- Qiu, Y.; Jiang, H.; Kovács, I.; Xia, Q.-K.; Yang, X. Quantitative analysis of H-species in anisotropic minerals by unpolarized infrared spectroscopy: An experimental evaluation. Am. Mineral. 2018, 103, 1761–1769. [Google Scholar] [CrossRef]
- Bai, Q.; Kohlstedt, D.L. Effects of chemical environment on the solubility and incorporation mechanism for hydrogen in olivine. Phys. Chem. Mineral. 1993, 19, 460–471. [Google Scholar] [CrossRef]
- Matveev, S.; O’Neill, H.S.C.; Ballhaus, C.; Taylor, W.R.; Green, D.H. Effect of silica activity on OH-IR spectra of olivine: Implications for low-a SiO2 mantle metasomatism. J. Petrol. 2001, 42, 721–729. [Google Scholar] [CrossRef]
- Lemaire, C.; Kohn, S.C.; Brooker, R.A. The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: A polarised infrared spectroscopic study. Contrib. Mineral. Petrol. 2004, 147, 48–57. [Google Scholar]
- Matsyuk, S.S.; Langer, K. Hydroxyl in olivines from mantle xenoliths in kimberlites of the Siberian platform. Contrib. Mineral. Petrol. 2004, 147, 413–437. [Google Scholar] [CrossRef]
- Huang, R.; Sun, W.; Ding, X.; Wang, Y.; Zhan, W. Experimental investigation of iron mobility during serpentinization. Acta Petrol. Sin. 2015, 31, 883–890. [Google Scholar]
- Cai, J.; Liu, F.; Liu, P.; Wang, F. Metamorphic P-T evolution and tectonic implications of pelitic granulites in the Ji’an area, northeastern Jiao-Liao-Ji Belt, North China Craton. J. Asian Earth Sci. 2020, 191, 104197. [Google Scholar] [CrossRef]
- Finkelstein, G.J.; Dera, P.K.; Jahn, S.; Oganov, A.R.; Holl, C.M.; Meng, Y.; Duffy, T.S. Phase transitions and equation of state of forsterite to 90 GPa from single-crystal X-ray diffraction and molecular modeling. Am. Mineral. 2014, 99, 35–43. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liu, Y.; Liu, X. A metastable Fo-III wedge in cold slabs subducted to the lower part of the mantle transition zone: A hypothesis based on first-principles simulations. Minerals 2019, 9, 186. [Google Scholar] [CrossRef]
- Mao, Z.; Jacobsen, S.D.; Jiang, F.; Smyth, J.R.; Holl, C.M.; Frost, D.J.; Duffy, T.S. Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth Planet. Sci. Lett. 2010, 293, 250–258. [Google Scholar] [CrossRef]
Rim(10) a | Mantle(10) | Core(5) | |
---|---|---|---|
SiO2 | 40.90(158)b | 41.29(55) | 41.32(47) |
TiO2 | 0.02(2) | 0.02(2) | 0.01(1) |
Al2O3 | 0.00(0) | 0.01(1) | 0.01(1) |
Cr2O3 | 0.02(2) | 0.00(1) | 0.02(2) |
FeO | 0.35(3) | 0.36(3) | 0.37(1) |
MnO | 0.04(2) | 0.03(2) | 0.02(2) |
NiO | 0.02(2) | 0.01(2) | 0.01(2) |
MgO | 57.79(144) | 57.74(56) | 57.66(40) |
CaO | 0.01(1) | 0.01(1) | 0.01(1) |
Na2O | 0.02(2) | 0.01(1) | 0.00(0) |
K2O | 0.00(1) | 0.01(1) | 0.00(0) |
Total | 99.16(117) | 99.48(79) | 99.44(72) |
Si | 0.97(3) | 0.98(1) | 0.98(1) |
Ti | 0.00(0) | 0.00(0) | 0.00(0) |
Al | 0.00(0) | 0.00(0) | 0.00(0) |
Cr | 0.00(0) | 0.00(0) | 0.00(0) |
Fe | 0.01(0) | 0.01(0) | 0.01(0) |
Mn | 0.00(0) | 0.00(0) | 0.00(0) |
Ni | 0.00(0) | 0.00(0) | 0.00(0) |
Mg | 2.05(6) | 2.04(2) | 2.04(1) |
Ca | 0.00(0) | 0.00(0) | 0.00(0) |
Na | 0.00(0) | 0.00(0) | 0.00(0) |
K | 0.00(0) | 0.00(0) | 0.00(0) |
Total | 3.03(3) | 3.02(1) | 3.02(1) |
Mg#c | 99.67(3) | 99.65(3) | 99.64(1) |
Rim(10) a | Core(9) | |
---|---|---|
Li | 1.87(48)b | 1.97(38) |
B | 1763(23) | 1759(33) |
Na | 0.92(28) | 1.06(73) |
Al | 38.0(73) | 38.1(64) |
P | 121(13) | 120(11) |
Ca | 23.7(75) | 20.7(50) |
Sc | 1.20(4) | 1.20(4) |
Ti | 7.22(188) | 7.59(216) |
V | 0.57(6) | 0.57(6) |
Cr | 0.92(8) | 0.71(8) |
Mn | 198(5) | 199(5) |
Co | 0.58(3) | 0.58(2) |
Ni | 0.91(6) | 0.91(3) |
Cu | b.d.l.c | b.d.l. |
Zn | 44.0(9) | 44.0(11) |
Ga | 0.28(2) | 0.27(2) |
Sr | b.d.l. | b.d.l. |
Y | 0.068(12) | 0.063(12) |
Zr | 0.87(12) | 1.04(35) |
Nb | 0.094(24) | 0.103(32) |
Ce | b.d.l. | b.d.l. |
Antigorite(13) a | Brucite(8) | |
---|---|---|
SiO2 | 40.48(317) b | 1.21(101) |
TiO2 | 0.02(3) | 0.01(1) |
Al2O3 | 0.11(14) | 0.07(8) |
Cr2O3 | 0.01(1) | 0.01(2) |
FeO | 0.48(20) | 0.39(8) |
MnO | 0.02(3) | 0.07(3) |
NiO | 0.01(2) | 0.02(2) |
MgO | 43.30(292) | 80.98(464) |
CaO | 0.02(1) | 0.03(2) |
Na2O | 0.02(2) | 0.03(4) |
K2O | 0.02(2) | 0.02(2) |
Total | 84.50(147) | 82.83(459) c |
Si | 3.87(24) | 0.01(1) |
Ti | 0.00(0) | 0.00(0) |
Al | 0.01(2) | 0.00(0) |
Cr | 0.00(0) | 0.00(0) |
Fe | 0.04(2) | 0.00(0) |
Mn | 0.00(0) | 0.00(0) |
Ni | 0.00(0) | 0.00(0) |
Mg | 6.19(49) | 0.98(2) |
Ca | 0.00(0) | 0.00(0) |
Na | 0.00(0) | 0.00(0) |
K | 0.00(0) | 0.00(0) |
Total | 10.12(24) | 0.99(1) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; He, M.; Yan, W.; Yang, M.; Liu, X. Jianite: Massive Dunite Solely Made of Virtually Pure Forsterite from Ji’an County, Jilin Province, Northeast China. Minerals 2020, 10, 220. https://doi.org/10.3390/min10030220
Wang Y, He M, Yan W, Yang M, Liu X. Jianite: Massive Dunite Solely Made of Virtually Pure Forsterite from Ji’an County, Jilin Province, Northeast China. Minerals. 2020; 10(3):220. https://doi.org/10.3390/min10030220
Chicago/Turabian StyleWang, Yuwei, Mingyue He, Wei Yan, Mei Yang, and Xi Liu. 2020. "Jianite: Massive Dunite Solely Made of Virtually Pure Forsterite from Ji’an County, Jilin Province, Northeast China" Minerals 10, no. 3: 220. https://doi.org/10.3390/min10030220
APA StyleWang, Y., He, M., Yan, W., Yang, M., & Liu, X. (2020). Jianite: Massive Dunite Solely Made of Virtually Pure Forsterite from Ji’an County, Jilin Province, Northeast China. Minerals, 10(3), 220. https://doi.org/10.3390/min10030220