Petrography, Mineralogy, and Geochemistry of Combustion Metamorphic Rocks in the Northeastern Ordos Basin, China: Implications for the Origin of “White Sandstone”
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Petrography of Combustion Metamorphic Rocks and White Sandstones from the Northeastern Ordos Basin
4.1.1. Main Types of CM Rocks and Their Macroscopic Characteristics
4.1.2. Macroscopic Characteristics of White Sandstones
4.2. Mineralogy of Combustion Metamorphic Rocks and White Sandstones
4.2.1. CM Rocks
4.2.2. White Sandstones
4.3. Whole Rock Chemistry of the CM Rocks and White Sandstones
5. Discussion
5.1. Characteristics of Combustion Metamorphic Rocks in in Northeastern Ordos Basin
5.2. Origin of White Sandstone
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heffern, E.L.; Coates, D.A. Geologic history of natural coal-bed fires, Powder River basin, USA. Int. J. Coal Geol. 2004, 59, 25–47. [Google Scholar] [CrossRef]
- Grapes, R.; Korzhova, S.; Sokol, E.; Seryotkin, Y. Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia. Contrib. Mineral. Petrol. 2011, 162, 253–273. [Google Scholar] [CrossRef]
- Stracher, G.B.; Prakash, A.; Sokol, E.V. Case Studies—Coal Fires; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 1–786. [Google Scholar]
- Sokol, E.V.; Volkova, N.I. Combustion metamorphic events resulting from natural coal fires. In Geology of Coal Fires: Case Studies from Around the World; Stracher, G.B., Ed.; Geological Society of America: Boulder, CO, USA, 2007; Volume 18, pp. 97–115. [Google Scholar]
- Grapes, R. Pyrometamorphism, 2nd ed.; Springer: London, UK, 2010; p. 331. [Google Scholar]
- Stracher, G.B.; Prakash, A.; Sokol, E.V. Photographs and Multimedia Tours; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2, pp. 1–5547. [Google Scholar]
- Zhang, Y.; Zhang, X.; Hower, J.C.; Hu, S. Mineralogical and geochemical characteristics of pyrometamorphic rocks induced by coal fires in Junggar Basin, Xinjiang, China. J. Geochem. Explor. 2020, 213, 106511. [Google Scholar] [CrossRef]
- Žáček, V.; Skála, R.; Dvořák, Z. Combustion metamorphism in the Most Basin, Czech Republic. In Coal and Peat Fires: A Global Perspective Volume 3 Case Studies—Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 161–199. [Google Scholar]
- Vapnik, Y.; Sharygin, V.V.; Sokol, E.V.; Shagam, R. Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. In Geology of Coal Fires: Case Studies from Around the World; Stracher, G.B., Ed.; Geological Society of America: Boulder, CO, USA, 2007; Volume 18, pp. 133–154. [Google Scholar]
- Masalehdani, M.N.; Black, P.M.; Kobe, H.W. Mineralogy and petrography of iron-rich slags and paralavas formed by spontaneous coal combustion, Rotowaro coalfield, North Island, New Zealand. In Geology of Coal Fires: Case Studies from Around the World; Stracher, G.B., Ed.; Geological Society of America: Boulder, CO, USA, 2007; Volume 18, pp. 117–131. [Google Scholar]
- Žáček, V.; Skala, R.; Dvořák, Z. Rocks and Minerals Formed by Fossil Combustion Pyrometamorphism in the Neogene Brown Coal Most Basin, Czech Republic. Bull. Mineral. Petrol. Oddel. Nar. Muz. 2010, 17, 1–2. [Google Scholar]
- Laita, E.; Bauluz, B.; Yuste, A. High-temperature mineral phases generated in natural clinkers by spontaneous combustion of coal. Minerals 2019, 9, 213. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, J.; Suárez-Ruiz, I.; Ward, C.R.; Flores, D. Petrography and mineralogy of self-burning coal wastes from anthracite mining in the El Bierzo Coalfield (NW Spain). Int. J. Coal Geol. 2016, 154–155, 92–106. [Google Scholar] [CrossRef]
- Sharygin, V.V.; Sokol, E.V.; Belakovsky, D.I. Mineralogy and Origin of Fayalite–Sekaninaite Paralava: Ravat Coal Fire, Central Tajikistan. In Coal and Peat Fires: A Global Perspective Volume 3 Case Studies—Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 581–607. [Google Scholar]
- Baboolal, A.A.; Knight, J.; Wilson, B. Petrography and mineralogy of pyrometamorphic combustion metamorphic rocks associated with spontaneous oxidation of lignite seams of the Erin Formation, Trinidad. J. S. Am. Earth Sci. 2018, 82, 181–192. [Google Scholar] [CrossRef]
- Creelman, R.A.; Ward, C.R.; Schumacher, G.; Juniper, L. Relation between coal mineral matter and deposit mineralogy in pulverized fuel furnaces. Energy Fuels 2013, 27, 5714–5724. [Google Scholar] [CrossRef]
- Novikova, S.; Sokol, E.; Khvorov, P. Multiple combustion metamorphic events in the Goose Lake Coal Basin, Transbaikalia, Russia: First dating results. Quat. Geochronol. 2016, 36, 38–54. [Google Scholar] [CrossRef]
- Novikov, I.; Sokol, E. Combustion metamorphic events as age markers of orogenic movements in Central Asia. Acta Petrol. Sin. 2007, 23, 1561–1572. [Google Scholar]
- Gur, D.; Steinitz, G.; Kolodny, Y.; Starinsky, A.; McWilliams, M. 40Ar39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chem. Geol. 1995, 122, 171–184. [Google Scholar] [CrossRef]
- Song, Z.; Kuenzer, C. Coal fires in China over the last decade: A comprehensive review. Int. J. Coal Geol. 2014, 133, 72–99. [Google Scholar] [CrossRef]
- Huang, L.; Liu, C. Products of combustion of the Yan’an formation coal seam and their characteristics in the northeastern Ordos Basin. Acta Geol. Sin. 2014, 88, 1753–1761. [Google Scholar]
- Vapnik, Y.; Palchik, V.; Galuskina, I.; Banasik, K.; Krzykawski, T. Mineralogy, chemistry and rock mechanic parameters of katoite-bearing rock from the Hatrurim Basin, Israel. J. Afr. Earth Sci. 2018, 147, 322–330. [Google Scholar] [CrossRef]
- Prakash, A.; Gens, R.; Prasad, S.; Raju, A.; Gupta, R.P. Coal Fires in the Jharia Coalfield, India. In Coal and Peat Fires: A Global Perspective Volume 2: Photographs and Multimedia Tours; Stracher, G.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 2, pp. 153–177. [Google Scholar]
- Abad, I.; Sánchez-Gómez, M.; Reolid, M.; Sánchez-Vizcaíno, V.L. Pyrometamorphic Rocks in the Molinicos Basin (Betic Cordillera, SE Spain): Insights into the Generation of Cordierite Paralavas. Minerals 2019, 9, 748. [Google Scholar] [CrossRef] [Green Version]
- Riihimaki, C.A.; Reiners, P.W.; Heffern, E.L. Climate control on Quaternary coal fires and landscape evolution, Powder River basin, Wyoming and Montana. Geology 2009, 37, 255–258. [Google Scholar] [CrossRef]
- Reiners, P.W.; Riihimaki, C.A.; Heffern, E.L. Clinker geochronology, the first glacial maximum, and landscape evolution in the northern Rockies. GSA Today 2011, 21, 4–9. [Google Scholar] [CrossRef]
- Querol, X.; Izquierdo, M.; Monfort, E.; Alvarez, E.; Font, O.; Moreno, T.; Alastuey, A.; Zhuang, X.; Lu, W.; Wang, Y. Environmental characterization of burnt coal gangue banks at Yangquan, Shanxi Province, China. Int. J. Coal Geol. 2008, 75, 93–104. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Peng, J.; Zhang, T.; Li, J. Metamorphic products of coal combustion and its macroscopic models in North China. J. China Coal Soc. 2016, 41, 1705–1798. [Google Scholar]
- Guan, H.; Van Ganderen, J.L.; Tan, Y.; Kang, G.; Wan, Y. The Environment Investigation and Study of Coal Seam Self-Combustion in Northern China; Coal Industrial Press: Beijing, China, 1997; pp. 27–29. [Google Scholar]
- Stracher, G.B.; Prakash, A.; Schroeder, P.; McCormack, J.; Zhang, X.; Van Dijk, P.; Blake, D. New mineral occurrences and mineralization processes: Wuda coal-fire gas vents of Inner Mongolia. Am. Mineral. 2005, 90, 1729–1739. [Google Scholar] [CrossRef]
- Kuenzer, C. Remote and In Situ Mapping of Coal Fires: Case Studies from China and India: Case Studies from China and India. In Coal and Peat Fires: A Global Perspective Volume 3 Case Studies—Coal Fires; Stracher, G.B., Prakash, A., Sokol, E.V., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 3, pp. 57–93. [Google Scholar]
- Huang, L.; Liu, C. Petrologic and REE geochemical characters of burnt rocks. Earth Sci. J. China Univ. Geosci. 2008, 33, 515–522. [Google Scholar]
- Huang, L. Charaeters and Forming conditions of Burnt Rocks in Yan’an Formation of Northern Ordos Basin. Master’s Thesis, Northwest University, Xi’an, China, 2008. [Google Scholar]
- Ye, Y.G.; Wu, X.L.; Diao, S.B.; Jiang, B.N.; Zheng, X.H.; Dong, Y.R. Formation ages of burned metamorphic rocks from the Kuqa River section Tarim Basin. Mar. Geol. Quat. Geol. 1998, 18, 115–119. [Google Scholar] [CrossRef]
- Sun, J.; Rui, M.A.; Shu, L. Petrologic Characteristics of Burnt Rocks from Coalfield Selfcombustion at Urumqi, Xinjiang. J. Nanjing Archit. Civ. Eng. Inst. 2001, 59, 15–19. [Google Scholar]
- Novikov, I.S.; Sokol, E.V.; Travin, A.V.; Novikova, S.A. Signature of Cenozoic orogenic movements in combustion metamorphic rocks: Mineralogy and geochronology (example of the Salair-Kuznetsk Basin transition). Russ. Geol. Geophys. 2008, 49, 378–396. [Google Scholar] [CrossRef]
- Sokol, E.V.; Novikova, S.A.; Alekseev, D.V.; Travin, A.V. Natural coal fires in the Kuznetsk Coal Basin: Geologic causes, climate, and age. Russ. Geol. Geophys. 2014, 55, 1043–1064. [Google Scholar] [CrossRef]
- Yue, L.; Li, J.; Zheng, G.; Li, Z. Evolution of the Ordos Plateau and environmental effects. Sci. China Ser. D Earth Sci. 2007, 50, 19–26. [Google Scholar] [CrossRef]
- Qiu, W.L.; Zhang, J.F.; Wang, X.Y.; Guo, Y.J.; Zhuang, M.G.; Fu, X.; Zhou, L.P. The evolution of the Shiwanghe River valley in response to the Yellow River incision in the Hukou area, Shaanxi, China. Geomorphology 2014, 215, 34–44. [Google Scholar] [CrossRef]
- Deng, Q.; Feng, X.; Zhang, P.; Yang, X.; Xu, X.; Peng, S.; Li, J. Reverse fault and fold zone in the Urumqi range-front depression of the northern Tianshan and its genetic mechanism. Earth Sci. Front. 1999, 6, 191–201. [Google Scholar]
- Gu, Z.K.; Shi, C.X. Dynamical characteristics of geomorphologic evolution of the basins covered by Pisha-sandstone in the eastern wing of the Ordos Plateau, China. J. Mt. Sci. 2018, 15, 1046–1056. [Google Scholar] [CrossRef]
- Zhang, Y.; Liao, C.; Shi, W.; HU, B. Neotectonic Evolution of the Peripheral Zones of the Ordos Basin and Geodynamic Setting. Geol. J. China Univ. 2006, 12, 285–297. [Google Scholar]
- Yuan, B.; Tang, G.; Zhou, L.P.; Hao, Q.; Li, F.; Lu, Z. Control action on the geomorphic differentiation in loess plateau and the formation of yellow river by cenozoic tectogenesis. Quat. Sci. 2012, 32, 829–838. [Google Scholar]
- Zhao, H.; Liu, C.; Weng, W.; Gui, X.; Yue, L.; Wang, J.; Liang, M. Structural reverse and its significance to oil and gas in the east and west parts of Ordos Basin in the Neogene. Acta Pet. Sin. 2007, 28, 6–11. [Google Scholar]
- Shi, Z.Q.; Yang, X.; Wang, Y.; Du, Y.; Xiao, K.; Duan, X. Theory of uranium mineralization caused by supergene hydrothermal fluid in coal-bearing basins:Evidences from Jurassic sandstone in southern Yili Basin and northeastern Ordos Basin, China. J. Chengdu Univ. Technol. 2016, 43, 703–718. [Google Scholar]
- Hoffmann, J.; Roth, A.; Voigt, S. Detecting Coal Fires in China Using Differential Interferometric Synthetic Aperture Radar (InSAR). In Proceedings of the FRINGE 2003 Workshop (ESA SP-550), Frascati, Italy, 1–5 December 2004; pp. 1–5. [Google Scholar]
- Kuenzer, C.; Zhang, J.; Tetzlaff, A.; Van Dijk, P.; Voigt, S.; Mehl, H.; Wagner, W. Uncontrolled coal fires and their environmental impacts: Investigating two arid mining regions in north-central China. Appl. Geogr. 2007, 27, 42–62. [Google Scholar] [CrossRef]
- Kuenzer, C.; Zhang, J.; Li, J.; Voigt, S.; Mehl, H.; Wagner, W. Detection unknown coal fires: Synergy of automated coal fire risk area delineation and improved thermal anomaly extraction. Int. J. Remote Sens. 2007, 28, 4561–4585. [Google Scholar] [CrossRef]
- Song, Z.; Kuenzer, C. Spectral reflectance (400–2500nm) properties of coals, adjacent sediments, metamorphic and pyrometamorphic rocks in coal-fire areas: A case study of Wuda coalfield and its surrounding areas, northern China. Int. J. Coal Geol. 2017, 171, 142–152. [Google Scholar] [CrossRef]
- Gorenc, M.; Chan, M. Hydrocarbon-induced diagenetic alteration of the Permian White Rim Sandstone, Elaterite Basin, southeast Utah. AAPG Bull. 2015, 99, 807–829. [Google Scholar] [CrossRef]
- Gorenc, M.A. Petrophysical and Diagenetic Characteristics of the Permian White Rim Sandstone, Southeast Utah; University of Utah: Salt Lake City, UT, USA, 2015. [Google Scholar]
- Beitler, B.; Chan, M.A.; Parry, W.T. Bleaching of Jurassic Navajo Sandstone on Colorado Plateau Laramide highs: Evidence of exhumed hydrocarbon supergiants? Geology 2003, 31, 1041–1044. [Google Scholar] [CrossRef]
- Hilse, U.; Goepel, A.; Pudlo, D.; Heide, K.; Gaupp, R. Characterization of CO2-induced (?) bleaching phenomena in German red bed sediments by combined geochemical and evolved gas analysis. Geophys. Res. 2010, 12, 1684. [Google Scholar]
- Zhang, L.; Liu, C.; Lei, K.; Sun, L.; Cun, X.; Du, F.; Deng, H. White Bleached Sandstone Genesis and Paleo-Weathered Crust Forming Environment of the Jurassic Yanan Formation in the Northeastern Ordos Basin. Acta Geol. Sin. 2017, 91, 1345–1359. [Google Scholar]
- Ma, Y.; Liu, C.; Wang, J.; Zhao, J.; Fang, J.; Gui, X.; Yu, l. Effects of hydrocarbon migration and dissipation in later reformation of a basin:formation of Mesozoic bleached sandstone in northeastern Ordos basin. Oil Gas Geol. 2006, 27, 233–238. [Google Scholar]
- Vassilev, S.V.; Vassileva, C.G. Occurrence, abundance and origin of minerals in coals and coal ashes. Fuel Process. Technol. 1996, 48, 85–106. [Google Scholar] [CrossRef]
- Evans, M.; Heller, F. Environmental Magnetism: Principles and Applications of Enviromagnetics; Elsevier: New York, NY, USA, 2003; Volume 86, pp. 1–299. [Google Scholar]
- Suárez-Ruiz, I.; Crelling, J.C. Applied Coal Petrology: The Role of Petrology in Coal Utilization; Elsevier: Amserdam, The Netherlands, 2008; pp. 1–388. [Google Scholar]
- Wang, B.; Kaakinen, A.; Clift, P.D. Tectonic controls of the onset of aeolian deposits in Chinese Loess Plateau—A preliminary hypothesis. Int. Geol. Rev. 2018, 60, 945–955. [Google Scholar] [CrossRef]
- Pan, B.T.; Hu, Z.B.; Wang, J.P.; Vandenberghe, J.; Hu, X.F.; Wen, Y.H.; Li, Q.; Cao, B. The approximate age of the planation surface and the incision of the Yellow River. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2012, 356, 54–61. [Google Scholar] [CrossRef]
- Sun, J.; Dong, Y. Middle-Late Triassic sedimentation in the Helanshan tectonic belt:Constrain on the tectono-sedimentary evolution of the Ordos Basin, North China. Geosci. Front. 2019, 10, 213–227. [Google Scholar] [CrossRef]
- Ritts, B.D.; Hanson, A.D.; Darby, B.J.; Nanson, L.; Berry, A. Sedimentary record of Triassic intraplate extension in North China: Evidence from the nonmarine NW Ordos Basin, Helan Shan and Zhuozi Shan. Tectonophysics 2004, 386, 177–202. [Google Scholar] [CrossRef]
- Liu, S.; Yang, S. Upper Triassic—Jurassic sequence stratigraphy and its structural controls in the western Ordos Basin, China. Basin Res. 2001, 12, 1–18. [Google Scholar] [CrossRef]
- Ding, Z.L.; Sun, J.M.; Liu, T.S.; Zhu, R.X.; Yang, S.L.; Guo, B. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China. Earth Planet. Sci. Lett. 1998, 161, 135–143. [Google Scholar] [CrossRef]
- Ao, W.; Huang, W.; Weng, C.; Xiao, X.; Liu, D.; Tang, X.; Chen, P.; Zhao, Z.; Wan, H.; Finkelman, R.B. Coal petrology and genesis of Jurassic coal in the Ordos Basin, China. Geosci. Front. 2012, 3, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, W. Study on the formation, evolution and coalaccumulating regularity of the Jurassic Ordos Basin. Earth Sci. Front. 1999, 6, 147–154. [Google Scholar]
- Liu, C.; Zhao, H.; Gui, X.; Yue, L.; Zhao, J.; An, X. Space-Time Coordinate of the Evolution and Reformation and Mineralization Response in Ordos Basin. Acta Geol. Sin. 2006, 80, 617–638. [Google Scholar]
- Zhang, Y.; Liao, C.; Shi, W.; Zhang, T.; Guo, F. Jurassic Deformation in and Around the Ordos Basin, North China. Earth Sci. Front. 2007, 14, 182–196. [Google Scholar] [CrossRef]
- Grapes, R.; Zhang, K.; Peng, Z.-L. Paralava and clinker products of coal combustion, Yellow River, Shanxi Province, China. Lithos 2009, 113, 831–843. [Google Scholar] [CrossRef]
- Huang, W.; Ao, W.; Weng, C.; Xiao, X.; Liu, D.; Tang, X.; Chen, P.; Zhao, Z.; Wan, H.; Finkelman, B. Characteristics of coal petrology and genesis of Jurassic coal in Ordos Basin. Geoscience 2010, 24, 1186–1197. [Google Scholar]
- Xu, H.; Tang, D.Z.; Liu, D.M.; Tang, S.H.; Yang, F.; Chen, X.Z.; He, W.; Deng, C.M. Study on coalbed methane accumulation characteristics and favorable areas in the Binchang area, southwestern Ordos Basin, China. Int. J. Coal Geol. 2012, 95, 1–11. [Google Scholar] [CrossRef]
- Gao, W.S. Coal petrographic characteristics of Shenmu—Dongsheng. Coal Geol. China 1991, 3, 36–38. [Google Scholar]
- Wang, H.; Chu, X.; Liu, B.; Hou, H.; Ma, L. Atlas of the Paleogeography of China; Cartographic Publishing House: Beijing, China, 1985. [Google Scholar]
- Wang, C.Y.; Sandvol, E.; Zhu, L.; Lou, H.; Yao, Z.X.; Luo, X.H. Lateral variation of crustal structure in the Ordos block and surrounding regions, North China, and its tectonic implications. Earth Planet. Sci. Lett. 2014, 387, 198–211. [Google Scholar] [CrossRef]
- Hu, Z.B.; Pan, B.T.; Guo, L.Y.; Vandenberghe, J.; Liu, X.; Wang, J.P.; Fan, Y.L.; Mao, J.W.; Gao, H.S.; Hu, X.F. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge during the past 1.2 Ma as a result of tectonic extension. Quat. Sci. Rev. 2016, 133, 1–14. [Google Scholar] [CrossRef]
- An, Z.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 2001, 411, 62–66. [Google Scholar]
- Jiang, F.; Fu, J.; Wang, S.; Zhao, Z. The age of the Yellow River passing through the Sanmen Gorge. J. Geomech. 2005, 11, 293–301. [Google Scholar]
- Zhang, X.; Liu, Y.; Wang, S.; Liu, W.; Xue, W. On the chronology of the Yellow Rivers and the Yangtze Rivers. Mt. Res. 2018, 36, 661–668. [Google Scholar]
- Wei, S. DEM drainage analysis of the Shanxi–Shaanxi gorge in the middle reaches of the Huanghe River and its neotectonic implications. Quat. Sci. 2008, 28, 288–298. [Google Scholar]
- Liu, Y. Formation of the Yellow River terrace about 1. 1 Ma along the Shanxi—Shaanxi Gorge and its tectonic background. J. Palaeogeogr. 2018, 20, 477–488. [Google Scholar]
- Guo, Z.; Sun, B.; Zhang, Z.; Peng, S.; Xiao, G.; Ge, J.; Hao, Q.; Qiao, Y. A major reorganization of Asian climate regime by the Early Miocene. Clim. Past 2008, 4, 153–174. [Google Scholar] [CrossRef] [Green Version]
- Westaway, R. Active crustal deformation beyond the SE margin of the Tibetan Plateau: Constraints from the evolution of fluvial systems. Glob. Planet. Chang. 2009, 68, 395–417. [Google Scholar] [CrossRef]
- Kuenzer, C.; Stracher, G.B. Geomorphology of coal seam fires. Geomorphology 2012, 138, 209–222. [Google Scholar] [CrossRef]
- Cao, D.; Fan, X.; Guan, H.; Wu, C.; Shi, X.; Jia, Y. Geological models of Spontaneous Combustion in the Wuda Coalfield, Inner Mongolia, China. In Geology of Coal Fires: Case Studies from Around the World; Stracher, G.B., Ed.; Geological Society of America: Boulder, CO, USA, 2007; Volume 19, pp. 23–31. [Google Scholar]
- McDonough, W.F.; Sun, S.S. The composition of the Earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In The Crust; Rudnick, R.L., Ed.; Elsevier: Oxford, UK, 2003; pp. 1–66. [Google Scholar]
- Heffern, E.L.; Reiners, P.W.; Naeser, C.W.; Coates, D.A. Geochronology of clinker and implications for evolution of the Powder River Basin landscape, Wyoming and Montana. In Geology of Coal Fires: Case Studies from Around the World; Stracher, G.B., Ed.; Geological Society of America: Boulder, CO, USA, 2007; Volume 18, pp. 155–175. [Google Scholar]
- Matjier, R.H.; Ward, C.R.; Li, Z. Mineralogical Transformations in Coal Feedstocks during Combustion, based on Packed-Bed Combustor Tests Part 1: Bulk Coal and Ash Studies. Coal Combust. Gasif. Prod. 2012, 4, 45–54. [Google Scholar]
- Stracher, G.B. Gas Vent Mineralization and Coal Combustion; Elsevier: Amsterdam, The Netherlands, 2011; Volume 3, pp. 135–153. [Google Scholar]
- Reifenstein, A.P.; Kahraman, H.; Coin, C.D.A.; Calos, N.J.; Uwins, P. Behaviour of selected minerals in an improved ash fusion test: Quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite. Fuel 1999, 78, 1449–1461. [Google Scholar] [CrossRef]
- Saxby, J.D. Minerals in coal. In Organic Matter and Mineralisation: Thermal Alteration, Hydrocarbon Generation and Role in Metallogenesis; Mastalerz, M., Glikson, M., Eds.; Kluwer Academic Publishers: London, UK, 2000; pp. 314–326. [Google Scholar]
- Ward, C.R.; Taylor, J.C.; Matulis, C.E.; Dale, L.S. Quantification of mineral matter in the Argonne Premium Coals using interactive Rietveld-based X-ray diffraction. Int. J. Coal Geol. 2001, 46, 67–82. [Google Scholar] [CrossRef]
- Li, J.; Zhu, M.; Zhang, Z.; Zhang, K.; Shen, G.; Zhang, D. The mineralogy, morphology and sintering characteristics of ash deposits on a probe at different temperatures during combustion of blends of Zhundong lignite and a bituminous coal in a drop tube furnace. Fuel Process. Technol. 2016, 149, 176–186. [Google Scholar] [CrossRef]
- French, D.; Dale, L.; Matulis, C.; Saxby, J.; Chatfiel, P.; Hurst, H.J. Characterization of mineral transformation in pulverized fuel combustion by dynamic high temperature x-ray diffraction analyzer. In Proceedings of the 18th Pittsburgh International Coal Conference, Newcastle, Australia, 3–7 December 2001. [Google Scholar]
- Chan, M.; Parry, W.; Bowman, J. Diagenetic Hematite and Manganese Oxides and Fault-Related Fluid Flow in Jurassic Sandstones, Southeastern Utah. AAPG Bull. 2000, 84, 1281–1310. [Google Scholar]
- Beitler, B.; Parry, W.T.; Chan, M.A. Fingerprints of Fluid Flow: Chemical Diagenetic History of the Jurassic Navajo Sandstone, Southern Utah, U.S.A. J. Sediment. Res. 2005, 75, 547–561. [Google Scholar] [CrossRef]
- Garden, I.; Guscott, S.; Burley, S.; Foxford, K.; Walsh, J.J.; Marshall, J. An exhumed palaeo-hydrocarbon migration fairway in a faulted carrier system, Entrada Sandstone of SE Utah, USA. Geofluids 2001, 1, 195–213. [Google Scholar] [CrossRef]
- Parry, W.; Chan, M.; Nash, B. Diagenetic characteristics of the Jurassic Navajo Sandstone in the Covenant oil field, central Utah thrust belt. AAPG Bull. 2009, 93, 1039–1061. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Zhang, F.; Zhao, J.; Yu, L.; Huang, L. Genesis and Characteristics of the Dongsheng Kaolin Deposits in Ordos Basin. J. Jilin Univ. 2007, 37, 929–936. [Google Scholar]
- Ma, Y.; Liu, C.; Zhao, J.; Huang, L.; Yu, L.; Gui, X.; Fang, J.; Wang, J. Relationship between sandstone bleaching and gas escape in northeast ordos basin. Sci. China Ser. D Earth Sci. 2007, 37, 127–138. [Google Scholar]
- Song, T.; Liu, L.; Wang, Y.; Liu, N.; Yu, M. Characteristics and genesis of the bleached Pisha sandstone in Ordos Basin. Oil Gas Geol. 2014, 35, 679–685. [Google Scholar]
- Tan, Y.; Wang, J.; Gao, D.; He, Y.; Han, P. Alteration characteristics and genetic mechanisms of Yan’an Formation sandstone bleaching in Dongsheng area. Nat. Gas Explor. Dev. 2017, 40, 17–23. [Google Scholar]
- Liu, H.; Ding, B.; Liu, Z.; Zhang, X.; Pan, C. Genesis of strong kaolinization in ore-bearing sandstone from Mengqiguer uranium deposit, Yili Basin, China. Acta Mineral. Sin. 2017, 37, 40–48. [Google Scholar]
- Ding, B.; Liu, H.; Yang, S.; Yang, L.; Ren, Z.; Li, P.; Zhang, B. Discussion on the genesis of kaolinite in white sandstone of Yanan Formation in the northeast of Ordos Basin. Geol. Rev. 2019, 65, 51–52. [Google Scholar]
- Wu, B.; Wei, A.; Liu, C.; Song, Z.; Hu, L.; Wang, D.; Cun, X.; Sun, L.; Luo, J. Stable isotope tracing on the formation of white sandstone in Yan’an Group, northern Ordos Basin, and its geological significance. Earth Sci. Front. 2015, 22, 205–214. [Google Scholar]
- Xu, B.; Shao, Y. The studies on hydrogen and oxygen isotopes in Kaolin deposits in Zhejiang Province. Sci. Geol. Sin. 1986, 1, 90–96. [Google Scholar]
- Shi, Z.; Chen, B.; Wang, Y.; Hou, M.; Jin, X.; Song, H.; Wang, X. A linkage between uranium mineralization and high diagenetic temperature caused by coal self-ignition in the southern Yili Basin, northwestern China. Ore Geol. Rev. 2020, 121, 1–14. [Google Scholar] [CrossRef]
- Singh, A.K.; Mondal, G.C.; Kumar, S.; Singh, K.K.; Kamal, K.P.; Sinha, A. Precipitation Chemistry and Occurrence of Acid Rain Over Dhanbad, Coal City of India. Environ. Monit. Assess. 2007, 125, 99–110. [Google Scholar] [CrossRef]
- Stracher, G.B.; Taylor, T.P. Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe. Int. J. Coal Geol. 2004, 59, 7–17. [Google Scholar] [CrossRef]
Section | BLT | DLT | SSG | MJG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Sample No. | S-1 | S-2 | S-3 | S-4 | S-5 | S-6 | S-7 | S-8 | S-9 | S-10 | S-11 | S-12 |
BLT-1 | BLT-13 | BLT-17 | BLT-5 | DLT-1 | DLT-2 | DLT-3 | DLT-4 | SSG-C-1 | SSG-C-2 | SSG-F-2 | MJG- | |
Lithology | Paralava | Clinker | Clinker | White Sandstone | Clinker | Paralava | Paralava | Clinker | Clinker | Clinker | White Sandstone | Clinker |
SiO2 | 61.10 | 65.47 | 62.99 | 65.99 | 61.49 | 67.82 | 62.38 | 58.26 | 59.75 | 58.42 | 69.41 | 61.83 |
TiO2 | 0.90 | 0.77 | 0.93 | 1.37 | 0.92 | 0.66 | 0.63 | 0.90 | 0.72 | 0.91 | 0.98 | 0.73 |
Al2O3 | 23.32 | 16.76 | 20.97 | 22.94 | 23.27 | 16.27 | 16.22 | 21.89 | 23.19 | 24.23 | 23.00 | 19.49 |
TFe2O3 | 5.97 | 3.74 | 4.39 | 0.66 | 4.10 | 5.06 | 3.24 | 8.65 | 3.93 | 4.93 | 0.91 | 5.46 |
MnO | 0.04 | 0.03 | 0.03 | 0.02 | 0.03 | 0.03 | 0.17 | 0.23 | 0.04 | 0.04 | 0.02 | 0.04 |
MgO | 1.26 | 0.93 | 0.6 | 0.19 | 1.18 | 0.72 | 0.82 | 2.19 | 1.98 | 2.28 | 0.55 | 2.51 |
CaO | 0.77 | 3.93 | 1.33 | 0.14 | 0.69 | 0.53 | 7.41 | 2.03 | 0.62 | 0.57 | 0.36 | 0.70 |
Na2O | 0.28 | 1.19 | 0.31 | 0.17 | 0.31 | 1.22 | 1.58 | 0.24 | 1.19 | 0.45 | 0.19 | 0.35 |
K20 | 1.96 | 2.34 | 0.41 | 2.69 | 1.90 | 2.58 | 1.70 | 0.38 | 2.77 | 2.75 | 3.32 | 2.71 |
P2O5 | 0.13 | 0.17 | 0.10 | 0.06 | 0.15 | 0.12 | 0.24 | 0.08 | 0.18 | 0.15 | 0.03 | 0.12 |
SO3 | 0.65 | 0.18 | 1.00 | 0.03 | 0.35 | 0.04 | 0.07 | 0.07 | 0.10 | 0.02 | 1.05 | 0.11 |
SrO | 0.03 | 0.03 | 0.03 | 0.01 | 0.02 | 0.01 | 0.02 | 0.04 | 0.01 | 0.01 | 0.01 | 0.02 |
LOI | 4.25 | 4.29 | 6.85 | 5.35 | 5.39 | 4.71 | 5.28 | 4.85 | 5.07 | 5.07 | 5.67 |
Sample No. | Rb | Ba | Th | U | Nb | La | Ce | Pb | Sr | Nd | Zr | Hf | Sm | Eu | Tb | Yb | Lu | Y | Sc | V | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BLT-1 | 103 | 600 | 19.5 | 3.92 | 17.3 | 54.8 | 106 | 5 | 253 | 38.5 | 157 | 4.4 | 7.31 | 1.64 | 1.00 | 3.70 | 0.56 | 32.1 | 22.3 | 165 | 33.5 |
BLT-13 | 82.8 | 635 | 17.35 | 3.09 | 14.4 | 68.1 | 133.5 | 14.6 | 188 | 57.4 | 289 | 7.4 | 10.95 | 2.27 | 1.22 | 2.82 | 0.40 | 30.2 | 17.7 | 93 | 37.8 |
BLT-17 | 5.3 | 2010 | 20.0 | 2.66 | 16.2 | 67.0 | 136 | 774 | 246 | 57.8 | 499 | 13.3 | 11 | 1.92 | 1.46 | 4.28 | 0.63 | 38.0 | 19.4 | 79 | 37.3 |
Section | Sample No. | Lithology | Illite (wt.%) | Kaolinit (wt.%) | Chlorite (wt.%) | Montmorillonite (wt.%) | Width of Illitic Half Peak (Δ2θ°) |
---|---|---|---|---|---|---|---|
SSG | SSG-D-6 | white sandstone | 8.6 | 79.7 | 11.7 | / | 0.335 |
SSG | SSG-F-2 | white sandstone | 10.5 | 77.4 | 12.1 | / | 0.270 |
SSG | SSG-F-3 | white sandstone | 17.4 | 71.8 | 10.8 | / | 0.265 |
SSG | SSG-F-4 | white sandstone | 13.2 | 76.3 | 10.5 | / | 0.402 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Wang, Y.; Franceschi, M.; Duan, X.; Li, K.; Yu, Y.; Wang, M.; Shi, Z. Petrography, Mineralogy, and Geochemistry of Combustion Metamorphic Rocks in the Northeastern Ordos Basin, China: Implications for the Origin of “White Sandstone”. Minerals 2020, 10, 1086. https://doi.org/10.3390/min10121086
Chen B, Wang Y, Franceschi M, Duan X, Li K, Yu Y, Wang M, Shi Z. Petrography, Mineralogy, and Geochemistry of Combustion Metamorphic Rocks in the Northeastern Ordos Basin, China: Implications for the Origin of “White Sandstone”. Minerals. 2020; 10(12):1086. https://doi.org/10.3390/min10121086
Chicago/Turabian StyleChen, Bin, Yanyan Wang, Marco Franceschi, Xiong Duan, Kuizhou Li, Yu Yu, Meiling Wang, and Zhiqiang Shi. 2020. "Petrography, Mineralogy, and Geochemistry of Combustion Metamorphic Rocks in the Northeastern Ordos Basin, China: Implications for the Origin of “White Sandstone”" Minerals 10, no. 12: 1086. https://doi.org/10.3390/min10121086
APA StyleChen, B., Wang, Y., Franceschi, M., Duan, X., Li, K., Yu, Y., Wang, M., & Shi, Z. (2020). Petrography, Mineralogy, and Geochemistry of Combustion Metamorphic Rocks in the Northeastern Ordos Basin, China: Implications for the Origin of “White Sandstone”. Minerals, 10(12), 1086. https://doi.org/10.3390/min10121086