Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives
Abstract
:1. Introduction
2. Materials and Methods
3. The PETM Event
3.1. Causes and Triggers
3.2. PETM Divisions and Durations
4. Results of Reviewing the Literature
4.1. The “Clay Fraction”
4.2. Methodological Approaches to Clay Mineral Quantification
4.3. The Kaolinite Pulse at the PETM
4.4. The Clay Mineral Signal at the PETM as a Paleoclimatic Tool?
5. General Discussion
6. Conclusions and Developments
Supplementary Materials
Funding
Acknowledgments
Conflicts of Interest
References
- Zachos, J.C.; Pagani, M.; Sloan, L.C.; Thomas, E.; Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.H.; Farley, K.A.; Zachos, J.C. An extraterrestrial 3He-based timescale for the Paleocene-Eocene thermal maximum (PETM) from Walvis Ridge, IODP Site 1266. Geochim. Cosmochim. Acta 2010, 74, 5098–5108. [Google Scholar] [CrossRef]
- Dickens, G.R. The blast in the past. Nature 1999, 401, 752–754. [Google Scholar] [CrossRef]
- Zeebe, E.R.; Ridgwell, A.; Zachos, J.C. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nat. Geosci. 2016, 9, 325–329. [Google Scholar] [CrossRef] [Green Version]
- McInerney, F.A.; Wing, S.L. The Paleocene-Eocene thermal maximum: A perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 2011, 39, 489–516. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.J. The origin and formation of clay minerals in soils: Past, present and future perspectives. Clay Miner. 1999, 34, 7–25. [Google Scholar] [CrossRef]
- Dixon, J.B.; Weed, S.B. Soil Science; Soil Science Society of America: Madison, WI, USA, 1989; p. 1245. [Google Scholar]
- Wevear, C.E. Clays, Muds, and Shales; Elsevier: Amsterdam, The Netherlands, 1989; p. 819. [Google Scholar]
- Thiry, M. Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth-Sci. Rev. 2000, 49, 201–221. [Google Scholar] [CrossRef]
- Kennett, J.P.; Stott, L.D. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature 1991, 353, 225–229. [Google Scholar] [CrossRef]
- Giusberti, L.; Boscolo Galazzo, F.; Thomas, E. Variability in climate and productivity during the Paleocene–Eocene Thermal Maximum in the western Tethys (Forada section). Clim. Past 2016, 12, 213–240. [Google Scholar] [CrossRef] [Green Version]
- Zachos, J.C.; Röhl, U.; Schellenberg, S.A.; Sluijs, A.; Hodell, D.A.; Kelly, D.C.; Thomas, E.; Nicolo, M.; Raffi, I.; Lourens, L.J.; et al. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science 2005, 308, 1611–1615. [Google Scholar] [CrossRef] [Green Version]
- Schaller, M.F.; Fung, M.K.; Wright, J.D.; Katz, M.E.; Kent, D.V. Impact ejecta at the Paleocene-Eocene boundary. Science 2016, 354, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, B.; Peucker-Ehrenbrink, B.; Heilmann-Clausenc, C.; Aberg, G.; Asaro, F.; Lee, C.-T.A. Basaltic explosive volcanism, but no comet impact, at the Paleocene–Eocene boundary: High-resolution chemical and isotopic records from Egypt, Spain and Denmark. Earth Plan. Sci. Lett. 2004, 225, 1–17. [Google Scholar] [CrossRef]
- Sluijs, A.; Brinkhuis, H.; Schouten, S.; Bohaty, S.M.; John, C.M.; Zachos, J.C.; Reichart, G.-J.; Damsté, J.S.S.; Crouch, E.M.; Dickens, G.R. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature 2007, 450, 1218–1221. [Google Scholar] [CrossRef] [PubMed]
- Farley, K.A.; Eltgroth, S.F. An alternative age model for the Paleocene–Eocene thermal maximum using extraterrestrial 3He. Earth Plan. Sci. Lett. 2003, 208, 135–148. [Google Scholar] [CrossRef]
- Röhl, U.; Westerhold, T.; Bralower, T.J.; Zachos, J.C. On the duration of the Paleocene-Eocene Thermal Maximum (PETM). Geochem. Geophys. Geosyst. 2007, 8, Q12002. [Google Scholar] [CrossRef]
- Westerhold, T.; Rohl, U.; Wilkens, R.H.; Gingerich, P.D.; Clyde, W.C.; Wing, S.L.; Bowen, G.J.; Kraus, M.J. Synchronizing early Eocene deep-sea and continental records–cyclostratigraphic age models for the Bighorn Basin Coring Project drill cores. Clim. Past 2018, 14, 303–319. [Google Scholar] [CrossRef] [Green Version]
- Egger, H.; Homayoun, M.; Huber, H.; Rogl, F.; Schmitz, B. Early Eocene climatic, volcanic, and biotic events in the northwestern Tethyan Untersberg section, Austria. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 217, 243–264. [Google Scholar] [CrossRef]
- Giusberti, L.; Capraro, L.; Luciani, V.; Fornaciari, E. The Italian record of the Palaeocene-Eocene Thermal Maximum. Boll. Soc. Paleontol. Ital. 2019, 58, 85–108. [Google Scholar]
- Sluijs, A.; Brinkhuis, H. A dynamic climate and ecosystem state during the Paleocene-Eocene Thermal Maximum: Inferences from dinoflagellate cyst assemblages on the New Jersey Shelf. Biogeosciences 2009, 6, 1755–1781. [Google Scholar] [CrossRef] [Green Version]
- Kemp, S.J.; Ellis, M.A.; Mounteney, I.; Kender, S. Palaeoclimatic implications of high resolution clay mineral assemblages preceding and across the onset of the Palaeocene–Eocene Thermal Maximum, North Sea Basin. Clay Miner. 2016, 51, 793–913. [Google Scholar] [CrossRef] [Green Version]
- Knox, R.W.O. Correlation of the early Paleocene in northwest Europe: An overview. Geol. Soc. Lond. Spec. Publ. 1996, 101, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Khozyem, H.; Adatte, T.; Spangenberg, J.E.; Keller, G.; Tantawy, A.A.; Ulianov, A. New geochemical constraints on the Paleocene-Eocene thermal maximum: Dababiya GSSP, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 429, 117–135. [Google Scholar] [CrossRef]
- Schulte, P.; Schwark, L.; Srassen, P.; Kouwenhoven, T.J.; Bornemann, A.; Speijer, R.P. Black shale formation during the Latest Danian Event and the Paleocene-Eocene Thermal Maximum in central Egypt: Two of a kind? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 371, 9–25. [Google Scholar] [CrossRef]
- Schulte, P.; Scheibner, C.; Speijer, R.P. Fluvial discharge and sea-level changes controlling black shale deposition during the Paleocene-Eocene Thermal Maximum in the Dababiya Quarry section, Egypt. Chem. Geol. 2011, 285, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Soliman, M.F.; Aubry, M.P.; Schmitz, B.; Sherrell, R.M. Enhanced coastal paleoproductivity and nutrient supply in Upper Egypt during the Paleocene/Eocene Thermal Maximum (PETM): Mineralogical and geochemical evidence. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 310, 365–377. [Google Scholar] [CrossRef]
- Dupuis, C.; Aubry, M.P.; Steurbaut, E.; Berggren, W.A.; Ouda, K.; Magioncalda, R.; Cramer, B.S.; Kent, D.V.; Speijer, R.P.; Heilmann-Clausen, C. The Dababiya Quarry section: Lithostratigraphy, clay mineralogy, geochemistry and paleontology. Micropaleontology 2003, 49, 41–59. [Google Scholar] [CrossRef] [Green Version]
- Schneider-Mor, A.; Bowen, G.J. Coupled and decoupled responses of continental and marine organic-sedimentary systems through the Paleocene-Eocene thermal maximum, New Jersey margin, USA. Paleoceanography 2013, 28, 105–115. [Google Scholar] [CrossRef]
- Cramer, B.S.; Aubry, M.P.; Miller, K.G.; Olsson, R.K.; Wright, J.D.; Kent, D.V. An exceptional chronologic, isotopic, and clay mineralogic record of the latest Paleocene thermal maximum, Bass River, NJ, ODP 174AX. Bull. Soc. Geol. France 1999, 170, 883–897. [Google Scholar]
- Giusberti, L.; Rio, D.; Agnini, C.; Backman, J.; Fornaciari, E.; Tateo, F.; Oddone, M. Mode and tempo of the Paleocene-Eocene thermal maximum in an expanded section from the Venetian pre-Alps. Geol. Soc. Am. Bull. 2007, 119, 391–412. [Google Scholar] [CrossRef]
- Kaiho, K.; Arinobu, T.; Ishiwatari, R.; Morgans, H.E.G.; Okada, H.; Takeda, N.; Tazaki, K.; Zhou, G.; Kajiwara, Y.; Matsumoto, R.; et al. Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography 1996, 11, 447–465. [Google Scholar] [CrossRef]
- Bolle, M.P.; Adatte, T. Palaeocene- early Eocene climatic evolution in the Tethyan realm: Clay mineral evidence. Clay Miner. 2001, 36, 249–261. [Google Scholar] [CrossRef]
- van der Meulen, B.; Gingerich, P.D.; Lourens, L.J.; Meijerc, N.; van Broekhuizen, S.; van Ginneken, S.; Abels, H.A. Carbon isotope and mammal recovery from extreme greenhouse warming at the Paleocene–Eocene boundary in astronomically-calibrated fluvial strata, Bighorn Basin, Wyoming, USA. Earth Planet. Sci. Lett. 2020, 534, 116044. [Google Scholar] [CrossRef]
- Kelly, D.C.; Zachos, J.C.; Bralower, T.J.; Schellenberg, S. Enhanced terrestrial weathering/runoff and surface ocean carbonate production during the recovery stages of the Paleocene–Eocene thermal maximum. Paleoceanography 2005, 20, PA1023. [Google Scholar] [CrossRef]
- Crouch, E.M.; Dickens, G.R.; Brinkhuis, H.; Aubry, M.-P.; Hollis, C.J.; Rogers, K.M.; Visscher, H. The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal maximum: New palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand. Palaeogeogr. Palaeoclim. Palaeoecol. 2003, 194, 387–403. [Google Scholar] [CrossRef]
- Gawenda, P.; Winkler, W.; Schmitz, B.; Adatte, T. Climate and bioproductivity control on carbonate turbidite sedimentation (Paleocene to Earliest Eocene, Gulf of Biscay, Zumaia, Spain). J. Sediment. Res. 1991, 49, 1253–1261. [Google Scholar] [CrossRef]
- Robert, C.; Chamley, H. Development of early Eocene warm climates, as inferred from clay mineral variations in oceanic sediments. Glob. Planet. Chang. 1991, 89, 315–331. [Google Scholar] [CrossRef]
- Gavrilov, Y.O.; Golovanova, O.V.; Shchepetova, E.V.; Pokrovsky, B.G. Lithological and Geochemical Characteristics of the Paleocene/Eocene Sediments corresponding to the PETM Biospheric Event in the Eastern Crimea (Nasypnoe Section). Lithol. Miner. Resour. 2018, 53, 337–348. [Google Scholar] [CrossRef]
- Do Campo, M.; Bauluz, B.; del Papa, C.; White, T.; Yuste, A.; Mayayo, M.J. Evidence of cyclic climatic changes recorded in clay mineral assemblages from a continental Paleocene-Eocene sequence, northwestern Argentina. Sediment. Geol. 2018, 368, 44–57. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Ding, Z.; Yang, S.; Zhang, C.; Wang, X. Increased precipitation and weathering across the Paleocene-Eocene Thermal Maximum in central China. Geochem. Geophys. Geosyst. 2016, 87, 2286–2297. [Google Scholar] [CrossRef] [Green Version]
- Pujalte, V.; Baceta, J.L.; Schmitz, B. A massive input of coarse-grained siliciclastics in the Pyrenean Basin during the PETM: The missing ingredient in a coeval abrupt change in hydrological regime. Clim. Past 2015, 11, 1653–1672. [Google Scholar] [CrossRef] [Green Version]
- Bornemann, A.; Norris, R.D.; Lyman, J.A.; D’haenens, S.; Groeneveld, J.; Röhl, U.; Farley, K.A.; Speijer, R.P. Persistent environmental change after the Palaeocene–Eocene Thermal Maximum in the eastern North Atlantic. Earth Planet. Sci. Lett. 2014, 394, 70–81. [Google Scholar] [CrossRef]
- Khozyem, H.; Adatte, T.; Spangenberg, J.E.; Tantawy, A.A.; Keller, G. Palaeoenvironmental and climatic changes during the Palaeocene–Eocene Thermal Maximum (PETM) at the Wadi Nukhul Section, Sinai, Egypt. J. Geol. Soc. Lond. 2013, 170, 2012–2046. [Google Scholar] [CrossRef]
- Wieczorek, R.; Fantle, M.S.; Kump, L.R.; Ravizza, G. Geochemical evidence for volcanic activity prior to and enhanced terrestrial weathering during the Paleocene Eocene Thermal Maximum. Geochim. Cosmochim. Acta 2013, 119, 391–410. [Google Scholar] [CrossRef]
- John, C.M.; Banerjee, N.R.; Longstaffe, F.J.; Sica, C.; Law, K.R.; Zachos, J.C. Clay assemblage and oxygen isotopic constraints on the weathering response to the Paleocene-Eocene thermal maximum, east coast of North America. Geology 2012, 9, 591–594. [Google Scholar] [CrossRef]
- Handley, L.; O’Halloran, A.; Pearson, P.N.; Hawkins, E.; Nicholas, C.J.; Schouten, S.; McMillan, I.K.; Pancost, R.D. Changes in the hydrological cycle in tropical East Africa during the Paleocene–Eocene Thermal Maximum. Palaeogeogr. Palaeoclim. Palaeoecol. 2012, 329–330, 10–21. [Google Scholar] [CrossRef]
- Kender, S.; Stephenson, M.H.; Riding, J.B.; Leng, M.J.; Knox, R.W.O.; Peck, V.L.; Kendrick, C.P.; Ellis, M.A.; Vane, C.H.; Jamieson, R. Marine and terrestrial environmental changes in NW Europe preceding carbon release at the Paleocene–Eocene transition. Earth Planet. Sci. Lett. 2012, 353–354, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Harding, I.C.; Charles, A.J.; Marshall, J.E.A.; Palike, H.; Roberts, A.P.; Wilson, P.A.; Jarvis, E.; Thorne, R.; Morris, E.; Moremon, R.; et al. Sea-level and salinity fluctuations during the Paleocene–Eocene thermal maximum in Arctic Spitsbergen. Earth Planet. Sci. Lett. 2011, 303, 97–107. [Google Scholar] [CrossRef]
- Dypvik, H.; Riber, L.; Burca, F.; Ruther, D.; Jargvoll, D.; Nagy, J.; Jochmann, M. The Paleocene-Eocene thermal maximum (PETM) in Svalbard—Clay mineral and geochemical signals. Palaeogeogr. Palaeoclim. Palaeoecol. 2011, 302, 156–169. [Google Scholar] [CrossRef]
- White, P.D.; Schiebout, J. Paleogene paleosols and changes in pedogenesis during the initial Eocene thermal maximum: Big Bend National Park, Texas, USA. Geol. Soc. Am. Bull. 2008, 120, 1347–1361. [Google Scholar] [CrossRef]
- Clechenko, E.R.; Kelly, D.C.; Harrington, G.J.; Stiles, C.A. Terrestrial records of a regional weathering profile at the Paleocene-Eocene boundary in the Williston Basin of North Dakota. Geol. Soc. Am. Bull. 2007, 119, 428–442. [Google Scholar] [CrossRef]
- Ernst, S.R.; Guasti, E.; Dupuis, C.; Speijer, R.P. Environmental perturbation in the southern Tethys across the Paleocene/Eocene boundary (Dababiya, Egypt): Foraminiferal and clay mineral records. Mar. Micropaleontol. 2006, 60, 89–111. [Google Scholar] [CrossRef]
- Huggett, M.J.; Knox, R.W.O. Clay mineralogy of the Tertiary onshore and offshore strata of the British Isles. Clay Miner. 2006, 41, 5–46. [Google Scholar] [CrossRef]
- Harrington, G.J.; Kemp, S.J.; Koch, P.L. Palaeocene-Eocene paratropical floral change in North America: Responses to climate change and plant immigration. J. Geol. Soc. 2004, 161, 173–184. [Google Scholar] [CrossRef]
- Knox, R.W.O.; Aubry, M.P.; Berggren, W.A.; Dupuis, C.; Ouda, K.; Magioncalda, R.; Soliman, M. The Qreiya section at Gebel Abu Had: Lithostratigraphy, clay mineralogy, geochemistry and biostratigraphy. Micropaleontology 2003, 49, 93–104. [Google Scholar] [CrossRef]
- Schmitz, B.; Pujalte, V. Sea-level, humidity, and land-erosion records across the initial Eocene thermal maximum from a continental-marine transect in northern Spain. Geology 2003, 31, 689–692. [Google Scholar] [CrossRef]
- Egger, H.; Homayoun, M.; Schnabel, W. Tectonic and climatic control of Paleogene sedimentation in the Rhenodanubian Flysch basin (Eastern Alps, Austria). Sediment. Geol. 2002, 152, 247–262. [Google Scholar] [CrossRef]
- Schmitz, B.; Pujalte, V.; Nunez-Betelu, K. Climate and sea-level perturbations during the incipient Eocene thermal maximum: Evidence from siliciclastic units in the Basque Basin (Ermua, Zumaia and Trabakua Pass), northern Spain. Palaeogeogr. Palaeoclim. Palaeoecol. 2001, 165, 299–320. [Google Scholar] [CrossRef]
- Gibson, T.G.; Bybell, L.M.; Mason, D.B. Stratigraphic and climatic implications of clay mineral changes around the Paleocene/Eocene boundary of the northeastern US margin. Sediment. Geol. 2000, 134, 65–92. [Google Scholar] [CrossRef]
- Knox, R.W.O. Kaolinite influx within Paleocene/Eocene boundary stata of Western Europe (Extended abstract). Newsl. Stratigr. 1998, 36, 49–53. [Google Scholar] [CrossRef]
- Robert, C.; Kennett, J.P. Antarctic Subtropical Humid Episode at the Paleocene-Eocene Boundary—Clay-Mineral Evidence. Geology 1994, 22, 211–214. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. General Introduction. In Clays, Clay Minerals, and Clay Science, 2nd ed.; Bergaya, F., Lagaly, G., Eds.; Developments in Clay Science 5A; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–19. [Google Scholar]
- Tomadin, L. Rappresentatività dei campioni e riproducibilità delle analisi di sedimenti argillosi nelle ricerche geologicje ed ambientali. Incontr. Sci. 2000, II, 1–8. [Google Scholar]
- Schultz, L.G. Quantitative Interpretation of Mineralogical Composition from X-ray and Chemical Data for the PierreShale; USGS Professional Paper 391-C; United States Government Printing Office: Washington, WA, USA, 1964; pp. 1–31.
- Biscaye, P.E. Mineralogy and Sedimentation of Recent Deep-Sea Clay in the Atlantic Ocean and Adjacent Seas and Oceans. Geol. Soc. Am. Bull. 1965, 76, 803–832. [Google Scholar] [CrossRef]
- Guggenheim, S.; Martin, R.T. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays Clay Miner. 1995, 43, 255–256. [Google Scholar] [CrossRef]
- Millot, G. Geology of Clays; Springer: Wien, Austria, 1970; p. 429. [Google Scholar]
- Chamely, H. Clay Sedimentology; Springer: Berlin/Heidelberg, Germany, 1989; p. 623. [Google Scholar]
- Schroeder, P.A. Clays in the Critical Zone; Cambridge University Press: Cambridge, UK, 1989; p. 246. [Google Scholar]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: New York, NY, USA, 1997; p. 376. [Google Scholar]
- Wlson, M.J. Rock-Forming Minerals, Volume 3C: Sheet Silicate; The Geological Society: London, UK, 2013. [Google Scholar]
- Godet, A.; Bodin, S.; Adatte, T.; Follmi, K. Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: Implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian). Cretac. Res. 2008, 29, 830–847. [Google Scholar] [CrossRef] [Green Version]
- Thiry, M.; Dupuis, C. Use of cIay minerals for paleoclimatic reconstructions: Limits of the method with special reference to the Paleocene-lower Eocene interval. GFF 2000, 122, 166–167. [Google Scholar] [CrossRef]
- Fagel, N. Clay Minerals, Deep Circulation and Climate. In Developments in Marine Geology; Hillaire–Marcel, C., De Vernal, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 139–184. [Google Scholar]
- Calvo, J.P.; Pozo, M. Geology of magnesian clays in sedimentary and non-sedimentary environments. In Magnesian Clays; Pozo, M., Galan, E., Eds.; AIPEA Educational Series; Digilabs: Bari, Italy, 2015; Volume 2, pp. 123–173. [Google Scholar]
- Cavalcante, F.; Belviso, C.; Bentivenga, M.; Fiore, S.; Prosser, G. Occurrence of palygorskite and sepiolite in upper Paleocene–middle Eocene marine deep sediments of the Lagonegro Basin (Southern Apennines-Italy): Paleoenvironmental and provenance inferences. Sediment. Geol. 2011, 233, 42–52. [Google Scholar] [CrossRef]
- Dinelli, E.; Tateo, F.; Summa, V. Geochemical and mineralogical proxies for grain size in mudstones and siltstones from the Pleistocene and Holocene of the Po River alluvial plain, Italy. In Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry; Arribas, J., Critelli, S., Johnsson, M.J., Eds.; Geological Society of America Special Paper; Geological Society of America: Boulder, CO, USA, 2007; Volume 420, pp. 25–36. [Google Scholar]
- von Eynatten, H.; Tolosana-Delgado, R.; Karius, V.; Bachmann, K.; Caracciolo, L. Sediment generation in humid Mediterranean setting: Grain-size and source-rock control on sediment geochemistry and mineralogy (Sila Massif, Calabria). Sediment. Geol. 2016, 336, 68–80. [Google Scholar] [CrossRef]
- Eberl, D.D.; Smith, D.B. Mineralogy of soils from two continental-scale transects across the United States and Canada and its relation to soil geochemistry and climate. Appl. Geochem. 2009, 24, 1394–1404. [Google Scholar] [CrossRef]
- Guyot, J.L.; Jouanneau, J.M.; Soares, L.; Boaventura, G.R.; Maillet, N.; Lagane, C. Clay mineral composition of river sediments in the Amazon Basin. Catena 2007, 71, 340–356. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Kastner, M.; Gallego-Torres, D.; Rodrigo-Gamiz, M.; Nieto-Moreno, V.; Ortega-Huertas, M. Paleoclimate and paleoceanography over the past 20,000 yr in the Mediterranean Sea Basins as indicated by sediment elemental proxies. Quat. Sci. Rev. 2015, 107, 25–46. [Google Scholar] [CrossRef]
- Tamburini, F.; Adatte, T.; Follmi, K.; Bernasconi, S.M.; Steinmann, P. Investigating the history of East Asian monsoon and climate during the last glacial-interglacial period (0–140000 years): Mineralogy and geochemistry of ODPSites 1143 and 1144, South China Sea. Mar. Geol. 2003, 201, 147–168. [Google Scholar] [CrossRef]
- Chen, Q.; Zhifei, Z.; Kissel, C. Clay mineralogical and geochemical proxies of the East Asian summer monsoon evolution in the South China Sea during Late Quaternary. Sci. Rep. 2017, 7, 42083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clift, P.D.; Hodges, K.; Heslop, D.; Hannigan, R.; Hoang, L.V.; Calves, G. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat. Geosci. 2008, 1, 875–880. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tateo, F. Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives. Minerals 2020, 10, 1073. https://doi.org/10.3390/min10121073
Tateo F. Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives. Minerals. 2020; 10(12):1073. https://doi.org/10.3390/min10121073
Chicago/Turabian StyleTateo, Fabio. 2020. "Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives" Minerals 10, no. 12: 1073. https://doi.org/10.3390/min10121073
APA StyleTateo, F. (2020). Clay Minerals at the Paleocene–Eocene Thermal Maximum: Interpretations, Limits, and Perspectives. Minerals, 10(12), 1073. https://doi.org/10.3390/min10121073