Structure Analysis of Natural Wangdaodeite—LiNbO3-Type FeTiO3
Abstract
:1. Introduction
2. Materials and Methods
2.1. Occurrence
2.2. Analytical Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ma, C.; Tschauner, O. Liuite, IMA 2017-042a. CNMNC Newsl. 2018, 46, 1189, reprinted in Eur. J. Mineral. 2018, 30, 1181–1189. [Google Scholar]
- Liu, L. High-pressure phase transformations and compression of ilmenite and rutile, I. Experimental results. Phys. Earth Planet. Inter. 1975, 10, 167–176. [Google Scholar] [CrossRef]
- Leinenweber, K.; Utsumi, W.; Tsuchida, Y.; Yagi, T.; Kurita, K. Unquenchable high-pressure perovskite polymorphs of MnSnO3 and FeTiO3. Phys. Chem. Miner. 1991, 18, 244–250. [Google Scholar] [CrossRef]
- Ming, L.C.; Kim, Y.-H.; Uchida, T.; Wang, Y.; Rivers, M. In situ X-ray diffraction study of phase transitions of FeTiO3 at high pressures and temperatures using a large-volume press and synchrotron radiation. Am. Miner. 2006, 91, 120–126. [Google Scholar] [CrossRef]
- Nishio-Hamane, D.; Zhang, M.; Yagi, T.; Ma, Y. High-pressure and high-temperature phase transitions in FeTiO3 and a new dense FeTi3O7 structure. Am. Miner. 2012, 97, 568–572. [Google Scholar] [CrossRef]
- Xie, X.; Gu, X.; Yang, H.; Chen, M.; Li, K. Wangdaodeite, IMA 2016-007. CNMNC Newsl. 2016, 31, 695, reprinted in Mineral. Mag. 2016, 80, 691–697. [Google Scholar]
- Xie, X.; Gu, X.; Yang, H.; Chen, M.; Li, K. Wangdaodeite, the LiNbO3-structured high-pressure polymorph of ilmenite, a new mineral from the Suizhou L6 chondrite. Meteorit. Planet. Sci. 2020. [Google Scholar] [CrossRef]
- Syono, Y.; Yamauchi, H.; Ito, A.; Someya, Y.; Ito, E.; Matsui, Y.; Akaogi, M.; Akimoto, S.-I. Magnetic properties of the disordered ilmenite FeTiO3 II synthesized at very high pressure. In Proceedings of the Ferrites: Proceedings of the International Conference, Kyoto, Japan, 29 September–2 October 1980; pp. 192–195. [Google Scholar]
- Ito, E.; Matsui, Y. High-pressure transformations in silicates, germanates, and titanates with ABO3 stoichiometry. Phys. Chem. Miner. 1979, 4, 265–274. [Google Scholar] [CrossRef]
- Mehta, A.; Leinenweber, K.; Navrotsky, A.; Akaogi, M. Calorimetric study of high-pressure polymorphism in FeTiO3—stability of the perovskite phase. Phys. Chem. Miner. 1994, 21, 207–212. [Google Scholar] [CrossRef]
- Varga, T.; Kumar, A.; Vlahos, E.; Denev, S.; Park, M.; Hong, S.; Sanehira, T.; Wang, Y.; Fennie, C.J.; Streffer, S.K.; et al. Coexistence of Weak Ferromagnetism and Ferroelectricity in the High Pressure LiNbO3-Type Phase of FeTiO3. Phys. Rev. Lett. 2009, 103, 047601. [Google Scholar] [CrossRef] [Green Version]
- Dubrovinsky, L.S.; El Goresy, A.; Gillet, P.; Wu, X.; Simionivici, A. A novel natural shock-induced high-pressure polymorph of FeTiO3 with the Li-niobate structure from the Ries Crater, Germany. Met. Planet. Sci. 2009, 44, A64. [Google Scholar]
- Stähle, V.; Altherr, R.; Nasdala, L.; Ludwig, T. Ca-rich majorite derived from high-temperature melt and thermally stressed hornblende in shock veins of crustal rocks from the Ries impact crater (Germany). Contrib. Miner. Pet. 2011, 161, 275–291. [Google Scholar] [CrossRef]
- Stähle, V.; Altherr, R.; Nasdala, L.; Trieloff, M.; Varychev, A. Majoritic garnet grains within shock-induced melt veins in amphibolites from the Ries impact crater suggest ultrahigh crystallization pressures between 18 and 9 GPa. Contrib. Miner. Pet. 2017, 172, 86. [Google Scholar] [CrossRef]
- Tschauner, O.; Ma, C.; Lanzirotti, A.; Newville, M.G. Riesite, A new high pressure polymorph of TiO2 from the Ries impact structure. Minerals 2020, 10, 78. [Google Scholar] [CrossRef] [Green Version]
- El Goresy, A.; Dubrovinsky, L.; Gillet, P.; Graup, G.; Chen, M. Akaogiite: An ultra-dense polymorph of TiO2 with the baddeleyite-type structure, in shocked garnet gneiss from the Ries Crater, Germany. Am. Miner. 2010, 95, 892–895. [Google Scholar] [CrossRef]
- Akaogi, M.; Abe, K.; Yusa, H.; Ishii, T.; Tajima, T.; Kojitani, H.; Mori, D.; Inaguma, Y. High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600 A degrees C. Phys. Chem. Miner. 2017, 44, 63–73. [Google Scholar] [CrossRef]
- Sirotkina, E.A.; Bobrov, A.V.; Spivak, A.V.; Bindi, L.; Pushcharovsky, D.Y. X-ray single-crystal and Raman study of (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, a new pyroxene synthesized at 7 GPa and 1700 degrees C. Phys. Chem. Miner. 2016, 43, 731–738. [Google Scholar] [CrossRef]
- Wu, X.; Steinle-Neumann, G.; Narygina, O.; McCammon, C.; Dubrovinsky, L. In situ high-pressure study of LiNbO3-type FeTiO3: X-ray diffraction and Mössbauer spectroscopy. High Press. Res. 2010, 30, 395–405. [Google Scholar] [CrossRef]
- Wechsler, B.A.; Prewitt, C.T. Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure. Am. Miner. 1984, 69, 176–185. [Google Scholar]
- Prescher, C.; Prakapenka, V.B. DIOPTAS: A program for reduction of two-dimensional X-ray diffraction data and data exploration. High Press. Res. 2015, 35, 223–230. [Google Scholar] [CrossRef]
- Kraus, W.; Nolze, G. PowderCell—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Cryst. 1996, 29, 301–303. [Google Scholar] [CrossRef]
- Putz, H.; Schon, J.C.; Jansen, M. Combined method for ab initio structure solution from powder diffraction data. J. Appl. Cryst. 1999, 32, 864–870. [Google Scholar] [CrossRef]
- Tschauner, O. Empirical constrains on volume changes in pressure-induced solid state transformations. High Press. Res. 2020, 40, 511–524. [Google Scholar]
- Tschauner, O. High-pressure minerals. Am. Miner. 2019, 104, 1701–1731. [Google Scholar] [CrossRef]
- Kroumova, E.; Aroyo, M.I.; Perez-Mato, J.M.; Kirov, A.; Capillas, C.; Ivantchev, S.; Wondratschek, H. Bilbao Crystallographic Server : Useful Databases and Tools for Phase-Transition Studies. Phase Transit. 2003, 76, 155–170. [Google Scholar] [CrossRef]
- Dowty, E. Fully automated microcomputer calculation of vibrational spectra. Phys. Chem. Miner. 1987, 14, 67–79. [Google Scholar] [CrossRef]
- Luo, S.-N.; Tschauner, O.; Asimow, P.D.; Ahrens, T.J. A new dense silica polymorph: A possible link between tetrahedrally and octahedrally coordinated silica. Am. Miner. 2004, 89, 455–461. [Google Scholar] [CrossRef]
- Xie, X.; Sharp, T.J. A new mineral with an olivine structure and pyroxene composition in the shock-induced melt veins of Tenham L6 chondrite. Am. Miner. 2011, 96, 430–436. [Google Scholar] [CrossRef]
- Tschauner, O.; Ma, C.; Spray, J.G.; Greenberg, E.; Prakapenka, V.B. Stöfflerite, (Ca,Na)(Si,Al)4O8 in the hollandite structure: A new high-pressure polymorph of anorthite from martian meteorite NWA 856. Am. Miner. 2020. in print. [Google Scholar] [CrossRef]
- King, D.A.; Ahrens, T.J. Shock compression of ilmenite. J. Geophys. Res. 1976, 81, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Schmieder, M.; Kennedy, T.; Jourdan, F.; Buchner, E.; Reimold, W.U. A high-precision 40Ar-39Ar age for the Nördlinger Ries impact crater, Germany, and implications for the accurate dating of terrestrial impact events. Geochim. Cosmochim. Acta 2018, 220, 146–157. [Google Scholar] [CrossRef]
Wangdaodeite | ||||||
Atom | Wyck. | SFO | x | y | z | U |
Fe1 | 6a | 0.92 | 0 | 0 | 0.284(20) | 0.015(1) |
Mn1 | 6a | 0.08 | 0 | 0 | 0.284(20) | 0.015(1) |
Ti1 | 6a | 1 | 0 | 0 | 0.0012(15) | 0.03(2) |
O1 | 18b | 1 | 0.3149(2) | 0.025(20) | 0.244(4) | 0.003(1) |
Ilmenite | ||||||
Atom | Wyck. | SFO. | x | y | z | U |
Fe | 6c | 0.92 | 0 | 0 | 0.640(2) | 0.0021(7) |
Mn | 6c | 0.08 | 0 | 0 | 0.640(2) | 0.0021(7) |
Ti | 6c | 1 | 0 | 0 | 0.852(1) | 0.0015(5) |
O | 18f | 1 | 0.3149(2) | 0.025(20) | 0.244(4) | 0.003(1) |
Mineral | V(Å3) | a(Å) | c(Å) | c/a | Fe-O(Å) | Ti-O(Å) |
---|---|---|---|---|---|---|
Wangdaodeite | 313.3(5) | 5.148(3) | 13.649(2) | 2.601(51) | 2.215(24) 2.058(80) | 2.111(31) 1.868(33) |
Wangdaodeite [7] | 314.1 | 5.13 | 13.78 | 2.69 | - | - |
Synthetic LN-type FeTiO3 [19] | 312.4(2) | 5.127(1) | 13.723(4) | 2.627(1) | 2.206(12) 2.063(32) | 2.083(18) 1.888(13) |
Synthetic LN-type FeTiO3 [10] | 311.3(3) | 5.118(2) | 13.723(4) | 2.681(2) | - | - |
Ilmenite [20] | 314.6(2) | 5.079(1) | 14.082(5) | 2.772(2) | 2.2008(1) 2.0775(1) | 2.0883(2) 1.8741(1) |
Constituent | Wt.% | Range | SD | Probe Standard |
---|---|---|---|---|
TiO2 | 52.48 | 52.11–52.71 | 0.17 | TiO2 |
FeO | 43.09 | 42.71–43.63 | 0.25 | fayalite |
MnO | 3.73 | 3.32–3.99 | 0.16 | Mn2SiO4 |
MgO | 0.04 | 0.02–0.07 | 0.01 | forsterite |
Total | 99.34 |
h | k | l | mul | D | |Fcalc| | |Fexp| | D(|F|) |
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 6 | 3.726 | 303.5 | 303.1 | 0.4 |
1 | 0 | 4 | 6 | 2.700 | 924.9 | 841.4 | 83.5 |
1 | 1 | 0 | 6 | 2.574 | 813.8 | 600.1 | 213.7 |
0 | 0 | 6 | 2 | 2.261 | 228.7 | 229.8 | −1.1 |
1 | 1 | 3 | 12 | 2.237 | 355.4 | 362.3 | −6.9 |
2 | 0 | 2 | 6 | 2.118 | 254.6 | 256.4 | −1.8 |
0 | 2 | 4 | 6 | 1.863 | 885.7 | 861.0 | 24.7 |
1 | 1 | 6 | 12 | 1.699 | 630.7 | 677.9 | −47.2 |
2 | 1 | 1 | 12 | 1.672 | 112.7 | 122.4 | −9.7 |
1 | 2 | 2 | 12 | 1.635 | 174.5 | 185.6 | −11.1 |
0 | 1 | 8 | 6 | 1.585 | 548.4 | 586.6 | −38.2 |
2 | 1 | 4 | 12 | 1.509 | 683.2 | 702.0 | −18.8 |
3 | 0 | 0 | 6 | 1.486 | 951.3 | 1000.0 | −48.7 |
1 | 2 | 5 | 12 | 1.431 | 92.1 | 89.8 | 2.3 |
2 | 0 | 8 | 6 | 1.350 | 415.9 | 431.5 | −15.6 |
1 | 1 | 9 | 12 | 1.301 | 188.2 | 185.1 | 3.1 |
1 | 0 | 10 | 6 | 1.298 | 574.8 | 575.0 | −0.2 |
2 | 2 | 0 | 6 | 1.287 | 547.3 | 582.0 | −34.7 |
2 | 1 | 7 | 12 | 1.272 | 77.3 | 85.3 | −8.0 |
3 | 0 | 6 | 6 | 1.242 | 200.6 | 218.8 | −18.2 |
0 | 3 | 6 | 6 | 1.242 | 205.1 | 223.3 | −18.2 |
2 | 2 | 3 | 12 | 1.238 | 142.8 | 149.5 | −6.7 |
1 | 3 | 1 | 12 | 1.231 | 100.2 | 103.9 | −3.7 |
3 | 1 | 2 | 12 | 1.217 | 162.5 | 171.1 | −8.6 |
1 | 2 | 8 | 12 | 1.195 | 381.7 | 411.9 | −30.2 |
Mode Symmetry | Ilmenite | Ilmenite (Defective) | Type-Wangdaodeite + Ilmenite | Mode Symmetry | Wangdaodeite |
---|---|---|---|---|---|
Ag (Au) | 722 (727) | 763 | 738–740 | A1 | 736 ± 10 |
- | - | - | - | A1 | 736 ± 10 |
Ag (Au) | 371 (369) | 371 | 372 | - | - |
Ag (Au) | - | 281 * | 273–276 | - | - |
Au | - | 695 * | 686–690 | - | - |
Au | - | 959 * | - | - | - |
- | - (598) | - | 560–563 | - | - |
Eg (Eu) | 679 (680) | 689 | 681 | E | 788 ± 10 |
Eg (Eu) | 340 (350) | 340 | 332 | E | 788 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tschauner, O.; Ma, C.; Newville, M.G.; Lanzirotti, A. Structure Analysis of Natural Wangdaodeite—LiNbO3-Type FeTiO3. Minerals 2020, 10, 1072. https://doi.org/10.3390/min10121072
Tschauner O, Ma C, Newville MG, Lanzirotti A. Structure Analysis of Natural Wangdaodeite—LiNbO3-Type FeTiO3. Minerals. 2020; 10(12):1072. https://doi.org/10.3390/min10121072
Chicago/Turabian StyleTschauner, Oliver, Chi Ma, Matthew G. Newville, and Antonio Lanzirotti. 2020. "Structure Analysis of Natural Wangdaodeite—LiNbO3-Type FeTiO3" Minerals 10, no. 12: 1072. https://doi.org/10.3390/min10121072