Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama
Abstract
:1. Introduction
2. Geology of the Study Area
3. Materials and Methods
3.1. Field Procedures
3.2. Water Quality Measurements and Sampling
3.3. Arsenic Speciation Analysis
3.4. Geochemical Analysis of Groundwater
3.5. Geochemical Analysis of Biogenic Pyrite
3.6. Geochemical Modeling
log K25 = 199.78
4. Results
4.1. Hydro-Stratigraphy
4.2. Field Measurements of Groundwater
4.3. Laboratory Measurements of Groundwater Samples
4.4. Oxidation Reduction Sequences
4.5. Laboratory Analysis of Biogenic Pyrite
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bhattacharya, P.; Chatterjee, D.; Jacks, G. Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: Options for safe drinking water supply. Int. J. Water Resour. Dev. 1997, 13, 79–92. [Google Scholar] [CrossRef]
- Welch, A.H.; Westjohn, D.B.; Helsel, D.R.; Wanty, R.B. Arsenic in ground water of the United States; occurrence and geochemistry. Groundwater 2000, 38, 589–604. [Google Scholar] [CrossRef]
- Harvey, C.F.; Swartz, C.H.; Badruzzman, B.; Keon, N.E.; Yu, W.; Ali, A.; Jay, J.; Beckie, R.; Niedan, V.; Brabander, D.; et al. Arsenic mobility and groundwater extraction in Bangladesh. Science 2002, 298, 1602–1606. [Google Scholar] [CrossRef] [Green Version]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behavior, and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- van Geen, A.; Zheng, Y.; Versteeg, R.; Stute, M.; Horneman, A.; Dhar, R.; Steckler, M.; Gelman, A.; Small, C.; Ahsan, H.; et al. Spatial variability of arsenic in 6000 contiguous tubewells of Araihazar, Bangladesh. Water Resour. Res. 2003, 39, 1140. [Google Scholar] [CrossRef] [Green Version]
- Shamsudduha, M. Mineralogical and Geochemical Profiling of Arsenic Contaminated Alluvial Aquifers in the Ganges-Brahmaputra Floodplain, Manikganj, Bangladesh. Master’s Thesis, Auburn University, Auburn, AL, USA, 2007; 183p. Available online: https://etd.auburn.edu/handle/10415/910 (accessed on 15 August 2007).
- Rahman, M.M.; Uddin, A.; Lee, M.-K. Bioremediation of arsenic contaminated groundwater in a Natural site in Macon County, Alabama. Geol. Soc. Am. Abstr. 2019, 51. [Google Scholar] [CrossRef]
- Turner, J.P. Groundwater Geochemistry, Geology and Microbiology of Arsenic Contaminated Holocene Alluvial Aquifers, Manikganj, Bangladesh. Master’s Thesis, Auburn University, Auburn, AL, USA, 2006. Available online: https://etd.auburn.edu/handle/10415/419 (accessed on 15 June 2006).
- Nickson, R.T.; McArthur, J.M.; Shrestha, B.; Kyaw-Myint, T.O.; Lowry, D. Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Appl. Geochem. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Liu, C.-W.; Wang, S.-W.; Jang, C.-S.; Lin, K.-H. Occurrence of arsenic in groundwater in the Choushui river alluvial fan, Taiwan. J. Environ. Qual. 2006, 35, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Huerta-Diaz, M.A.; Morse, J.W. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 1992, 56, 2681–2702. [Google Scholar] [CrossRef]
- Natter, M.; Keevan, J.; Wang, Y.; Keimowitz, A.R.; Okeke, B.C.; Son, A.; Lee, M.-K. Level and degradation of deepwater horizon spilled oil in coastal marsh sediments and pore-Water. Environ. Sci. Technol. 2012, 46, 5744–5755. [Google Scholar] [CrossRef]
- Lee, M.-K.; Natter, M.; Keevan, J.; Guerra, K.; Saunders, J.A.; Uddin, A.; Humayun, M.; Wang, Y.; Keimowitz, A.R. Assessing effects of climate change on biogeochemical cycling of trace metals in alluvial and coastal watersheds. Br. J. Environ. Clim. Chang. 2013, 3, 44–66. [Google Scholar] [CrossRef] [PubMed]
- Neumann, T.; Scholz, F.; Ostermaier, M.; Rausch, N.; Berner, Z. Arsenic in framboidal pyrite from recent sediments of a shallow water lagoon of the Baltic Sea. Sedimentology 2013, 60, 1389–1404. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Ford, R.G. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chem. Geol. 2006, 228, 156–174. [Google Scholar] [CrossRef]
- Couture, R.M.; Gobeil, C.; Tessier, A. Arsenic, iron and sulfur co-diagenesis in lake sediments. Geochim. Cosmochim. Acta 2010, 74, 1238–1255. [Google Scholar] [CrossRef]
- Saunders, J.A.; Pritchett, M.A.; Cook, R.B. Geochemistry of biogenic pyrite and ferromanganese stream coatings: A bacterial connection? Geomicrobiol. J. 1997, 14, 203–217. [Google Scholar] [CrossRef]
- Lowers, H.A.; Breit, G.N.; Foster, A.L.; Whitney, J.; Yount, J.; Uddin, M.N.; Muneem, A.A. Arsenic incorporation into authigenic pyrite, bengal basin sediment, Bangladesh. Geochim. Cosmochim. Acta 2007, 71, 2699–2717. [Google Scholar] [CrossRef] [Green Version]
- Saunders, J.A.; Lee, M.-K.; Shamsudduha, M.; Dhakal, P.; Uddin, A.; Chowdury, M.; Ahmed, K.M. Geochemistry, and mineralogy of arsenic in (natural) anaerobic groundwaters. Appl. Geochem. 2008, 23, 3205–3214. [Google Scholar] [CrossRef]
- Lee, M.-K.; Saunders, J.A.; Wilkin, R.T.; Shahnewaz, M. Geochemical modeling of arsenic speciation and mobilization: Implications for bioremediation. In Advances in Arsenic Research; Chapter 29; O’Day, P.A., Vlassopoulos, D., Meng, X., Benning, L.G., Eds.; Oxford University Press: Cary, NC, USA, 2005; pp. 398–413. ISBN 978084123913. [Google Scholar]
- Saunders, J.A.; Pivetz, B.E.; Voorhies, N.; Wilkin, R.T. Potential aquifer vulnerability in regions downgradient from uranium in situ recovery (ISR) sites. J. Environ. Manag. 2016, 183, 67–83. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-K.; Saunders, J.A.; Wilson, T.; Levitt, E.; Ghandehari, S.S.; Dhakal, P.; Redwine, J.; Marks, J.; Billor, M.Z.; Miller, B.; et al. Field-scale bioremediation of arsenic-contaminated groundwater using sulfate-reducing bacteria and biogenic pyrite. Bioremediation J. 2018, 23, 1–21. [Google Scholar] [CrossRef]
- Saunders, J.A.; Lee, M.-K.; Uddin, A.; Mohammad, S.; Wilkin, R.; Fayek, M.; Korte, N. Natural arsenic contamination of Holocene alluvial aquifers by linked tectonic, weathering, and microbial processes. Geochem. Geophys. Geosyst. 2005, 6, 66–81. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Proven Alternatives of Aboveground Treatment of Arsenic in Groundwater; EPA-542-S-02-002; Office of Solid Waste and Emergency Response, U.S. Environmental Protection Agency: Washington, DC, USA, 2002; 68p.
- Herath, I.; Vithanage, M.; Bundschuh, J.; Maity, J.P.; Bhattacharya, P. Natural Arsenic in Global Groundwaters: Distribution and Geochemical Triggers for Mobilization. Curr. Pollut. Rep. 2016, 2, 68–89. [Google Scholar] [CrossRef] [Green Version]
- Starnes, P.H. Hydrogeology and Geochemistry of Arsenic Contaminated Shallow Alluvial Aquifers in Florida and Alabama. Master’s Thesis, Auburn University, Auburn, AL, USA, 2015; 129p. Available online: https://etd.auburn.edu/handle/10415/5223 (accessed on 13 June 2016).
- Ahmed, K.M.; Bhattacharya, P.; Hasan, M.A.; Akhter, S.H.; Alam, S.M.M.; Bhuyian, M.A.H.; Imam, M.B.; Khan, A.A.; Sracek, O. Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Appl. Geochem. 2004, 19, 181–200. [Google Scholar] [CrossRef]
- Kinniburgh, D.G.; Smedley, P.L. Arsenic Contamination of Groundwater in Bangladesh; British Geologic Survey Report; British Geologic Survey: Nottingham, UK, 2001; 15p. [Google Scholar]
- Mandal, B.K.; Suzuki, K.T. Arsenic round the world: A review. Talanta 2002, 58, 201–235. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Worldwide occurrences of arsenic in groundwater. Science 2002, 296, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Uddin, A.; Shamsudduha, M.; Saunders, J.A.; Lee, M.-K.; Ahmed, K.M.; Chowdhury, M.T. Mineralogical profiling of arsenic-enriched alluvial sediments in the Ganges-Brahmaputra floodplain in central Bangladesh. Appl. Geochem. 2011, 26, 470–483. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Imam, M.B.; Akhter, S.H.; Hasan, M.A.; Khan, A.A. Sedimentology, and mineralogy of arsenic contaminated aquifers in the Bengal Delta of Bangladesh. In Groundwater Arsenic Contamination in the Bengal Delta Plain of Bangladesh; TRITA-AMI Report 3084; Jacks, G., Bhattacharya, P., Khan, A.A., Eds.; KTH Special Publication: Dhaka, Bangladesh, 2001; pp. 97–108. [Google Scholar]
- McArthur, J.M.; Ravencroft, P.; Safiullah, S.; Thirlwall, M.F. Arsenic in groundwater: Testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resour. Res. 2001, 37, 109–117. [Google Scholar] [CrossRef]
- Mukherjee, A.B.; Bhattacharya, P. Arsenic in groundwater in the Bengal Delta Plain: Slow poisoning in Bangladesh. Environ. Rev. 2001, 9, 189–220. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Frisbie, S.H.; Smith, E.; Naidu, R.; Jacks, G.; Sarkar, B. Arsenic in the environment: A global perspective. In Handbook of Heavy Metals in the Environment; Sarkar, B., Ed.; Marcell Dekker Inc.: New York, NY, USA, 2002; pp. 147–215. [Google Scholar]
- Bhattacharya, P.; Jacks, G.; Ahmed, K.M.; Khan, A.A.; Routh, J. Arsenic in groundwater of the Bengal Delta Plain aquifers in Bangladesh. Bull. Environ. Contam. Toxicol. 2002, 69, 538–545. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, M.A.; Ahmed, K.M. Naturally Occurring Groundwater Arsenic and Salinity Affected South-Western Bangladesh: An Assessment of Managed Aquifer Recharge (MAR) and Sub-surface Arsenic Removal (SAR) as Mitigation Techniques. In Proceedings of the GSA 2020 Connects Online, 26–30 October 2020; Volume 52. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hasan, M.A.; Ahmed, K.M. Alternative Options for Safe Drinking Water in Arsenic and Salinity Affected, Narail District, Bangladesh. Geol. Soc. Am. Abstr. 2018, 50. [Google Scholar] [CrossRef]
- Ahmed, K.M.; Imam, M.B.; Akhter, S.H.; Hasan, M.A.; Alam, M.M.; Chowdhury, S.Q.; Burgess, W.G.; Nickson, R.; McArthur, J.M.; Hasan, M.K.; et al. Mechanism of arsenic release to groundwater: Geochemical and mineralogical evidence. In Proceedings of the International Conference on Arsenic Pollution of Groundwater in Bangladesh: Causes, Effects and Remedy, Dhaka, Bangladesh, 8–12 February 1998; pp. 125–126. [Google Scholar]
- Nickson, R.T.; McArthur, J.M.; Ravenscroft, P.; Burgess, W.G.; Ahmed, K.M. Mechanism of arsenic release to groundwater, Bangladesh, and West Bengal. Appl. Geochem. 2000, 15, 403–413. [Google Scholar] [CrossRef]
- Nickson, R.; McArthur, J.; Burgess, W.; Ahmed, K.M.; Ravenscroft, P.; Rahman, M. Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338. [Google Scholar] [CrossRef]
- Routh, J.; Bhattacharya, P.; Jacks, G.; Ahmed, K.M.; Khan, A.A.; Rahman, M.M. Arsenic geochemistry of Tala groundwater and sediments from Satkhira District, Bangladesh. Eos Trans. Am. Geophys. Union 2000, 81, 550. [Google Scholar]
- Dowling, C.; Poreda, R.; Basu, A.; Peters, S. Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater. Water Resour. Res. 2002, 38, 12-1–12-8. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Stute, M.; van Geen, A.; Gavrieli, I.; Dhar, R.; Simpson, J.; Ahmed, K.M. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 2004, 19, 201–214. [Google Scholar] [CrossRef]
- Markewich, H.W.; Christopher, T.H. Pleistocene (?) and Holocene Fluvial History of Uphapee Creek, Macon County, Alabama; Geological Survey Bulletin-1522; U.S. Department of the Interior, Geological Survey: Reston, VA, USA, 1982. [Google Scholar] [CrossRef]
- Penny, E.; Lee, M.-K.; Morton, C. Groundwater and microbial processes of the Alabama coastal plain aquifers. Water Resour. Res. 2003, 39, 1320. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M. Geochemistry of Groundwater and Naturally Occurring Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama. Master’s Thesis, Auburn University, Auburn, AL, USA, 2019; 101p. Available online: https://etd.auburn.edu/handle/10415/6918 (accessed on 9 August 2020).
- Meng, X.; Wang, W. Speciation of arsenic by disposable cartridges. In Proceedings of the Third International Conference on Arsenic Exposure and Health Effects, San Diego, CA, USA, 12–15 July 1998. [Google Scholar]
- Reed, S.J.B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Bethke, C.M. Geochemical and Biogeochemical Reaction Modeling; Cambridge University Press: New York, NY, USA, 2008. [Google Scholar]
- Levitt, E.J. Bioremediation of Arsenic Contaminated Groundwater in Northwest Florida: Mineralogy, Geochemistry, and Microbiology Changes. Master’s Thesis, Auburn University, Auburn, AL, USA, 2017. Available online: https://etd.auburn.edu/handle/10415/5685 (accessed on 1 April 2012).
- Champ, D.R.; Gulens, J.; Jackson, R.E. Oxidation-reduction Sequences in groundwater flow systems. Can. J. Earth Sci. 1979, 16, 12–23. [Google Scholar] [CrossRef]
- Bethke, C.M.; Ding, D.; Jin, Q.; Sanford, R.A. Origin of microbiological zoning in groundwater flows. Geology 2008, 36, 739–742. [Google Scholar] [CrossRef]
- Naseem, S.; McArthur, J.M. Arsenic and other water-quality issues affecting groundwater, Indus alluvial plain, Pakistan. Hydrol. Process. 2018, 32, 1235–1253. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uddin, A.; Lee, M.-K. Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee watershed, Macon County, Alabama. In Proceedings of the GSA 2020 Connects Online, 26–30 October 2020; Volume 52. [Google Scholar] [CrossRef]
- Rieder, M.; Crelling, J.C.; Šustai, O.; Drábek, M.; Weiss, Z.; Klementová, M. Arsenic in iron disulfides in a brown coal from the North Bohemian Basin, Czech Republic. Int. J. Coal Geol. 2007, 71, 115–121. [Google Scholar] [CrossRef]
- Rickard, D. How long does it take a pyrite framboid to form? Earth Planet. Sci. Lett. 2019, 513, 64–68. [Google Scholar] [CrossRef]
- Postma, D.; Jakobsen, R. Redox zonation: Equilibrium constraints on the Fe(III)/SO4reduction interface. Geochim. Cosmochim. 1996, 60, 3169–3175. [Google Scholar] [CrossRef]
- Lee, R.W. Geochemistry of groundwater in Cretaceous sediments of the southeastern Coastal Plain of eastern Mississippi and western Alabama. Water Resour. Res. 1985, 21, 1545–1556. [Google Scholar] [CrossRef]
- Lovley, D.R.; Chapelle, F.H. Deep subsurface microbial processes. Rev. Geophys. 1995, 33, 365–381. [Google Scholar] [CrossRef]
- Chapelle, F.H.; Lovely, D.R. Competitive exclusion of sulfate reduction by Fe(III) reducing bacteria: A mechanism for producing discrete zones of high-iron groundwater. Groundwater 1992, 30, 29–36. [Google Scholar] [CrossRef]
Anion and Field Parameters | Well 4 | Well 1 | Well 2 | Well 3 |
---|---|---|---|---|
F | 0.02 | 0.02 | 0.01 | 0.06 |
Cl | 2.51 | 2.15 | 2.21 | 2.93 |
Br | <0.03 | <0.03 | <0.03 | <0.03 |
NO2 | <0.01 | <0.01 | <0.01 | <0.01 |
NO3 | 0.02 | 0.03 | 0.01 | <0.01 |
PO4 | <0.02 | <0.02 | 0.09 | <0.02 |
SO4 | 6.75 | 7.48 | 30.6 | 53.1 |
DOC | 2.741 | 3.706 | 7.382 | 3.714 |
Alkalinity | 6.50 | 12.10 | - | 27 |
Ferrous Iron | 0.08 | 0.32 | - | 3.30 |
pH | 6.51 | 5.53 | 6.07 | 6.08 |
Sulfide (µg/L) | 17 | 39 | - | 16 |
Eh (mV) | 173 | 121 | 68.5 | 46 |
Temp (°C) | 16 | 17.12 | 15.60 | 15.50 |
Cation and Trace Elements | Well 4 | Well 1 | Well 2 | Well 3 |
---|---|---|---|---|
Na | 1872.35 | 1361.62 | 8800.18 | 5492.71 |
K | 1685.58 | 3774.89 | 4295.06 | 4952.12 |
Ca | 4060.79 | 7471.53 | 24,177.84 | 28,853.27 |
Mg | 889.75 | 2178.08 | 5863.65 | 6651.73 |
Mn | 45.92 | 317.62 | 159.58 | 328.32 |
Fe | 2.42 | 239 | 1350.60 | 4210.04 |
As (Total) | 0.09 | 0.37 | 0.75 | 1.08 |
As (III) | 0.06 | 0.27 | 0.66 | 1.01 |
Co | 1.44 | 2.12 | 0.60 | 0.55 |
Ni | 3.97 | 2.71 | 1.56 | 0.066 |
Zn | 5.74 | 9.74 | 4.70 | 7.34 |
Saturation Index | Log Q/K | |||
---|---|---|---|---|
Well 4 | Well 1 | Well 2 | Well 3 | |
Hematite | 7.03 | 0.57 | 3.08 | 3.23 |
Goethite | 3.03 | −0.19 | 1.06 | 1.14 |
Magnetite | 3.90 | −3.93 | 0.18 | 0.78 |
Fe(OH)3(ppd) | −1.35 | −4.58 | −3.33 | −3.25 |
Pyrolusite | −15.81 | −20.66 | −20.63 | −21.05 |
Bixbyite | −17.56 | −23.55 | −22.78 | −22.89 |
Hausmannite | −21.79 | −28.92 | −27.43 | −27.22 |
Arsenian-pyrite | −58.3501 | −29.6983 | −24.2970 | −18.2552 |
Arseno-pyrite | −85.8697 | −60.3395 | −55.1280 | −50.2149 |
Element | Weight% | Atomic% | Comp% | Formula |
---|---|---|---|---|
Al | 0.18 | 0.15 | 0.34 | Al2O3 |
Si | 0.21 | 0.17 | 0.45 | SiO2 |
S | 26.71 | 19.48 | 66.69 | SO3 |
Fe | 24.96 | 10.45 | 32.11 | FeO |
Ni | 0.15 | 0.06 | 0.18 | NiO |
As | 0.17 | 0.05 | 0.23 | As2O3 |
Co | 0.19 | 0.08 | 0.25 | CoO |
O | 47.62 | 69.62 | ||
Total | 100.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Lee, M.-K.; Uddin, A. Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama. Minerals 2020, 10, 912. https://doi.org/10.3390/min10100912
Rahman MM, Lee M-K, Uddin A. Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama. Minerals. 2020; 10(10):912. https://doi.org/10.3390/min10100912
Chicago/Turabian StyleRahman, Md Mahfujur, Ming-Kuo Lee, and Ashraf Uddin. 2020. "Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama" Minerals 10, no. 10: 912. https://doi.org/10.3390/min10100912
APA StyleRahman, M. M., Lee, M. -K., & Uddin, A. (2020). Geochemistry of Groundwater and Naturally Occurring Biogenic Pyrite in the Holocene Fluvial Aquifers in Uphapee Watershed, Macon County, Alabama. Minerals, 10(10), 912. https://doi.org/10.3390/min10100912