Up-Concentration of Chromium in Stainless Steel Slag and Ferrochromium Slags by Magnetic and Gravity Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Characterization of the Samples
2.2.2. Sample Preparation
2.2.3. Magnetic Separation
2.2.4. Gravity Separation
3. Results
3.1. Characterization of the Samples
3.2. Results of Magnetic Separation
3.2.1. Magnetic Separation—SS Slag
3.2.2. Magnetic Separation—LC FeCr Slag
3.2.3. Magnetic Separation—HC FeCr Slag
3.3. Results of Gravity Separation
Gravity Separation—HC FeCr Slag
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Stainless Steel Forum (ISSF) Shanghai, Stainless Steel in Figures 2018. 2018. Available online: http://www.worldstainless.org/Files/issf/non-imagefiles/PDF/ISSF_Stainless_Steel_in_Figures_2018_English_Public.pdf (accessed on 24 June 2020).
- Salman, M.; Dubois, M.; Di Maria, A.; Van Acker, K.; Van Balen, K. Construction Materials from Stainless Steel Slags: Technical Aspects, Environmental Benefits, and Economic Opportunities. J. Ind. Ecol. 2016, 20, 854–866. [Google Scholar] [CrossRef]
- Horckmans, L.; Möckel, R.; Nielsen, P.; Kukurugya, F.; Vanhoof, C.; Morillon, A.; Algermissen, D. Multi-Analytical Characterization of Slags to Determine the Chromium Concentration for a Possible Re-Extraction. Minerals 2019, 9, 646. [Google Scholar] [CrossRef] [Green Version]
- Euroslag, Statistics 2016. Available online: https://www.euroslag.com/wp-content/uploads/2019/01/Statistics-2016.pdf (accessed on 24 June 2020).
- Karhu, M.; Talling, B.; Piotrowska, P.; Matas Adams, A.; Sengottuvelan, A.; Huttunen-Saarivirta, E.; Boccaccini, A.R.; Lintunen, P. Ferrochrome Slag Feasibility as a Raw Material in Refractories: Evaluation of Thermo-physical and High Temperature Mechanical Properties. Waste Biomass Valorizat. 2020. [Google Scholar] [CrossRef]
- Mombelli, D.; Mapelli, C.; Barella, S.; Di Cecca, C.; Le Saout, G.; Garcia-Diaz, E. The effect of chemical composition on the leaching behaviour of electric arc furnace (EAF) carbon steel slag during a standard leaching test. J. Environ. Chem. Eng. 2016, 4, 1050–1060. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Liu, C.; Cao, L.; Zheng, X.; Jiang, M. Stability of chromium in stainless steel slag during cooling. Minerals 2018, 8, 445. [Google Scholar] [CrossRef] [Green Version]
- Kotas, J.; Stasicka, Z. Chromium occurence in the environment and methods of its speciation. Environ. Pollut. 2000, 107, 263–283. [Google Scholar] [CrossRef]
- Cheremisina, E.; Schenk, J. Chromium Stability in Steel Slags. Steel Res. Int. 2017, 87, 1–7. [Google Scholar] [CrossRef]
- European Commission, Critical Raw Materials. Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en (accessed on 30 June 2020).
- Seuker, J. Chromium. In Environmental Forensics: Contaminant Specific Guide; Morrison, R.D., Murphy, B., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 81–93. [Google Scholar]
- Gianluca, C.; Rodrigo Gonzalo, M.; Farrell, F.; Roudier, S.; Remus, R.; Delgado Sancho, L. Best Available Techniques (BAT) Reference Document for the Main Non-Ferrous Metals Industries; European Commission: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- Gasik, M.I. Technology of Chromium and Its Ferroalloys. Handb. Ferroalloys 2013. [Google Scholar] [CrossRef]
- Murthy, Y.R.; Tripathy, S.K.; Kumar, C.R. Chrome ore benefication challenges & opportunities—A review. Miner. Eng. 2011, 24, 375–380. [Google Scholar]
- Tripathy, S.K.; Banerjee, P.K.; Suresh, N. Magnetic separation studies on ferruginous chromite fine to enhance Cr:Fe ratio. Int. J. Miner. Metall. Mater. 2015, 22, 217–224. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Singh, V.; Ramamurthy, Y. Improvement in Cr:Fe Ratio of Indian Chromite Ore for Ferro Chrome Production. Int. J. Min. Eng. Miner. Process. 2012, 1, 101–106. [Google Scholar] [CrossRef]
- Tripathy, S.K.; Murthy, Y.R.; Singh, V.; Suresh, N. Processing of ferruginous chromite ore by dry high-intensity magnetic separation. Miner. Process. Extr. Metall. Rev. 2016, 37, 196–210. [Google Scholar] [CrossRef]
- Svoboda, J. Magnetic Techniques for the Treatment of Materials; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Spooren, J.; Kim, E.; Horckmans, L.; Broos, K.; Nielsen, P.; Quaghebeur, M. In-situ chromium and vanadium recovery of landfilled ferrochromium and stainless steel slags. Chem. Eng. J. 2016, 303, 359–368. [Google Scholar] [CrossRef]
- Kim, E.; Spooren, J.; Broos, K.; Nielsen, P.; Horckmans, L.; Geurts, R.; Vrancken, K.C.; Quaghebeur, M. Valorization of stainless steel slag by selective chromium recovery and subsequent carbonation of the matrix material. J. Clean. Prod. 2016, 117, 221–228. [Google Scholar] [CrossRef] [Green Version]
- Gu, F.; Zhang, Y.; Peng, Z.; Su, Z.; Tang, H.; Tian, W.; Liang, G.; Lee, J.; Rao, M.; Li, G.; et al. Selective recovery of chromium from ferronickel slag via alkaline roasting followed by water leaching. J. Hazard. Mater. 2019, 374, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Can, İ.B.; Özsoy, B.; Ergün, Ş.L. Developing an optimum beneficiation route for a low-grade chromite ore. Physicochem. Probl. Miner. Process. 2019. [Google Scholar] [CrossRef]
- USA Geological Survey, Magnetic Susceptibilities of Minerals, Reston, VA. 2000. Available online: https://doi.org/10.3133/ofr99529 (accessed on 24 June 2020).
Abbreviation | Description (Type) | Magnetic Field Strength (Tesla) | Tested Material (Size Fraction) |
---|---|---|---|
LIMS | Dry low intensity magnetic separation (Handheld ferrite magnet) | 0.15 | HC 1 FeCr slag (0.5–4 mm) |
HIMS | Dry high intensity magnetic separation (Handheld REE 2 magnet) | 1 | LC 1 FeCr slag (0.125–0.5 mm) HC FeCr slag (0.5–4 mm) |
WLIMS | Wet low intensity magnetic separation (Wetchute with ferrite magnet) | 0.15 | HC FeCr slag (<0.5 mm) |
WHIMS | Wet high intensity magnetic separation (Wetchute with REE magnet) | 0.8 | SS 1 slag (<0.15 mm) HC FeCr slag (<0.5 mm) |
WHIMSe | Wet high gradient/intensity magnetic separation (WHIMS 500) | 0–2 | SS slag (<0.15 mm) LC FeCr slag (<0.125 mm) |
Parameter | Value | Unit |
---|---|---|
stroke speed | 250 | rpm |
washing water flow | 1000 | L/h |
feed dilution water | 250 | L/h |
Element/Oxide | Units | SS Slag | LC FeCr Slag | HC FeCr Slag 2 |
---|---|---|---|---|
Al2O3 | wt.% | 4.2 ± 0.5 | 7.2 ± 0.6 | 17.9 |
CaO | wt.% | 45.1 ± 2.6 | 43.0 ± 2.9 | 2.5 |
Fetot. | wt.% | 0.6 ± 0.1 | 0.3 ± 0.1 | 6.4 |
MgO | wt.% | 11.0 ± 1.8 | 14.0 ± 1.8 | 15.8 |
MnO | wt.% | 1.1 ± 0.2 | 0.1 ± 0.01 | 0.2 |
SiO2 | wt.% | 30.8 ± 5.6 | 30.3 ± 2.9 | 29.1 |
V2O5 | wt.% | 0.09 ± 0.03 | 0.06 ± 0.02 | 0.09 |
Cr | wt.% | 2.3 ± 0.5 | 3.2 ± 0.4 | 11.5 |
Mo | mg/kg | 40 1 | <5 | <5 |
Nb | mg/kg | 617 1 | <5 | <5 |
Fraction | Yield (wt.%) | Content (wt.%) | ||||
---|---|---|---|---|---|---|
Fe | Cr | Ca | Al | Si | ||
2–4 mm | 10.9 | 6.8 | 8.7 | 1.8 | 10.9 | 13.7 |
1–2 mm | 20.4 | 5.2 | 10.1 | 1.9 | 9.9 | 13.8 |
0.5–1 mm | 25.5 | 5.0 | 9.4 | 1.9 | 9.5 | 13.3 |
250–500 µm | 17.9 | 5.9 | 10.7 | 1.9 | 9.8 | 13.8 |
125–250 µm | 14.8 | 8.8 | 14.8 | 1.7 | 10.5 | 13.6 |
<125 µm | 10.1 | 10.9 | 16.8 | 1.8 | 11.2 | 12.8 |
Total | 100 | 6.5 | 11.2 | 1.8 | 10.1 | 13.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukurugya, F.; Nielsen, P.; Horckmans, L. Up-Concentration of Chromium in Stainless Steel Slag and Ferrochromium Slags by Magnetic and Gravity Separation. Minerals 2020, 10, 906. https://doi.org/10.3390/min10100906
Kukurugya F, Nielsen P, Horckmans L. Up-Concentration of Chromium in Stainless Steel Slag and Ferrochromium Slags by Magnetic and Gravity Separation. Minerals. 2020; 10(10):906. https://doi.org/10.3390/min10100906
Chicago/Turabian StyleKukurugya, Frantisek, Peter Nielsen, and Liesbeth Horckmans. 2020. "Up-Concentration of Chromium in Stainless Steel Slag and Ferrochromium Slags by Magnetic and Gravity Separation" Minerals 10, no. 10: 906. https://doi.org/10.3390/min10100906
APA StyleKukurugya, F., Nielsen, P., & Horckmans, L. (2020). Up-Concentration of Chromium in Stainless Steel Slag and Ferrochromium Slags by Magnetic and Gravity Separation. Minerals, 10(10), 906. https://doi.org/10.3390/min10100906