Biomineralization of Polychaete Annelids in the Fossil Record
Abstract
:1. Introduction
2. Materials and Methods
3. Biomineralization of Fossil Serpulids
3.1. Skeletal Structures
3.1.1. Unoriented Structures (Crystallization Axis Lacks Uniform Orientation)
3.1.2. Semi-Oriented Structures (The Crystallization Axis Has a Semi-Uniform Orientation)
3.1.3. Oriented Prismatic Structures (The Crystallization Axis Has a Uniform Orientation, and Is Continuous Through Successive Growth Lamellae)
3.2. Mineral Composition
4. Biomineralization of Fossil Sabellids
4.1. Skeletal Structures
4.2. Mineral Composition
5. Biomineralization of Fossil Cirratulids
5.1. Skeletal Structures
5.2. Mineral Composition
6. Discussion
6.1. Interpretation of Fossil Skeletal Structures and Fossilization Microstructures
6.2. Comparison of Fabrics of Skeletal Microstructures in Calcareous Polychaetes
6.3. Evolution of Skeletal Structures
6.4. Evolution of Mineral Composition
Funding
Acknowledgments
Conflicts of Interest
References
- Vinn, O.; Ten Hove, H.A.; Mutvei, H.; Kirsimäe, K. Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zool. J. Linn. Soc. 2008, 154, 633–650. [Google Scholar] [CrossRef]
- Vinn, O.; Ten Hove, H.A.; Mutvei, H. On the tube ultrastructure and origin of calcification in sabellids (Annelida, Polychaeta). Palaeontology 2008, 51, 295–301. [Google Scholar] [CrossRef]
- Vinn, O. The ultrastructure of calcareous cirratulid (Polychaeta, Annelida) tubes. Est. J. Earth Sci. 2009, 58, 153–156. [Google Scholar] [CrossRef]
- Sanfilippo, R.; Rosso, A.; Reitano, A.; Insacco, G. First record of sabellid and serpulid polychaetes from the Permian of Sicily. Acta Palaeontol. Pol. 2017, 62, 25–38. [Google Scholar] [CrossRef]
- Fischer, R.; Pernet, B.; Reitner, J. Organomineralization of cirratulid annelid tubes-fossil and recent examples. Facies 2000, 42, 35–50. [Google Scholar] [CrossRef]
- Bandel, K. The reconstruction of “Hyolithes kingi” as annelid worm from the Cambrian of Jordan. Mitt. Geol.-Paläontol. Inst. Univ. Hamburg 1986, 61, 35–101. [Google Scholar]
- Zibrowius, H.; ten Hove, H.A. Neovermilia falcigera (Roule, 1898), a deep- and cold-water serpulid polychaete common in the Mediterranean Plio-Pleistocene. Bull. Biol. Soc. 1987, 7, 259–271. [Google Scholar]
- Hove, H.A.T.; Smith, R.S. A re-description of Ditrupa gracillima Grube, 1878 (Polychaeta, Serpulidae) from the Indo-Pacific, with a discussion of the genus. Rec. Aust. Mus. 1990, 42, 101–118. [Google Scholar] [CrossRef] [Green Version]
- Sanfilippo, R.; Mòllica, E. Serpula cavernicola Fassari and Mòllica, 1991 (Annelida Polychaeta): Diagnostic features of the tubes and new Mediterranean records. Mar. Life 2000, 10, 27–32. [Google Scholar]
- Sanfilippo, R. Additional notes on the little known serpulid Serpula israelitica Amoreux, 1976 and new Mediterranean records. In Atti III Giornate di Paleontologia Maggio; Società Paleontologica Italiana: Modena, Italy, 2003. [Google Scholar]
- Nishi, E. On the internal structure of calcified tube walls in Serpulidae and Spirorbidae (Annelida, Polychaeta). Mar. Foul. 1993, 10, 17–20. [Google Scholar] [CrossRef]
- Sanfilippo, R. Spirorbid Polychaetes as boreal guests in the Mediterranean Pleistocene. Riv. Ital. Paleontol. Strat. 1998, 104, 279–286. [Google Scholar]
- Sanfilippo, R. Ditrupa brevis n.sp., a new serpulid from the Mediterranean Neogene with comments on the ecology of the genus. Riv. Ital. Paleontol. Strat. 1999, 105, 455–464. [Google Scholar]
- Weedon, M.J. Tube microstructure of Recent and Jurassic serpulid polychaetes and the question of the Palaeozoic ‘spirorbids’. Acta Palaeontol. Pol. 1994, 39, 1–15. [Google Scholar]
- Senowbari-Daryan, B. Barbafera carnica Senowbari-Daryan, 1980: A Triassic Worm-tube. Facies 1997, 36, 57–68. [Google Scholar] [CrossRef]
- Vinn, O. The tube ultrastructure of serpulids (Annelida, Polychaeta) Pentaditrupa subtorquata, Cretaceous, and Nogrobs cf. vertebralis, Jurassic, from Germany. Proc. Est. Acad. Sci. Geol. 2005, 54, 260–265. [Google Scholar]
- Taylor, P.D.; Vinn, O. Convergent morphology in small spiral worm tubes (‘Spirorbis’) and its palaeoenvironmental implications. J. Geol. Soc. 2006, 163, 225–228. [Google Scholar] [CrossRef]
- Vinn, O. Taxonomic implications and fossilization of tube ultrastructure of some Cenozoic serpulids (Annelida, Polychaeta) from Europe. Neues Jahrb. Geol. Paläontol. 2007, 244, 115–128. [Google Scholar] [CrossRef]
- Vinn, O. Tube ultrastructure of the fossil genus Rotularia Defrance, 1827 (Polychaeta, Serpulidae). J. Paleontol. 2008, 82, 206–212. [Google Scholar] [CrossRef]
- Vinn, O.; Furrer, H. Tube structure and ultrastructure of serpulids from the Jurassic of France and Switzerland, its evolutionary implications. Neues Jahrb. Geol. Paläontol. 2008, 250, 129–135. [Google Scholar] [CrossRef]
- Vinn, O.; Jäger, M.; Kirsimäe, K. Microscopic evidence of serpulid affinities of the problematic fossil tube “Serpula” etalensis from the Lower Jurassic of Germany. Lethaia 2008, 41, 417–421. [Google Scholar] [CrossRef]
- Vinn, O.; Mutvei, H.; Ten Hove, H.A.; Kirsimäe, K. Unique Mg-calcite skeletal ultrastructure in the tube of the serpulid polychaete Ditrupa. Neues Jahrb. Geol. Paläontol. 2008, 248, 79–89. [Google Scholar] [CrossRef]
- Buckman, J.O. The tube of Ditrupa bartonensis (Annelida, Serpulidae), from the Eocene of southern England: Observations on microstructure and its significance. Palaeontol. Electr. 2020, 23, a37. [Google Scholar] [CrossRef]
- Taylor, P.D.; Vinn, O.; Kudryavtsev, A.; Schopf, J.W. Raman spectroscopic study of the mineral composition of cirratulid tubes (Annelida, Polychaeta). J. Struct. Biol. 2010, 171, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Riedi, M.A.; Winter, D.J. Temperate reefs in a changing ocean: Skeletal carbonate mineralogy of serpulids. Mar. Biol. 2013, 160, 2281–2294. [Google Scholar] [CrossRef]
- Vinn, O.; Hryniewicz, K.; Little, C.T.S.; Nakrem, H.A. A Boreal serpulid fauna from Volgian-Ryazanian (latest Jurassic-earliest Cretaceous) shelf sediments and hydrocarbon seeps from Svalbard. Geodiversitas 2014, 36, 527–540. [Google Scholar] [CrossRef]
- Carter, J.G.; Bandel, K.; de Buffrenil, V.; Carlson, S.J.; Castanet, J.; Crenshaw, M.A.; Dalingwater, J.E.; Francillion-Vieillot, H.; Geradie, J.; Meunier, F.J.; et al. Glossary of Skeletal Biomineralization. In Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends; Carter, J.G., Ed.; Wiley: Hoboken, NJ, USA, 1990; pp. 609–671. [Google Scholar]
- The International Stratigraphic Chart. 2020. Available online: https://stratigraphy.org/icschart/ChronostratChart2020-03.pdf (accessed on 1 March 2020).
- Lowenstam, H.A. Environmental relations of modification compositions of certain carbonate secreting marine invertebrates. Proc. Natl. Acad. Sci. USA 1954, 40, 39–48. [Google Scholar] [CrossRef] [Green Version]
- Bornhold, B.D.; Milliman, J.D. Generic and environmental control of carbonate mineralogy in serpulid (Polychaete) tubes. J. Geol. 1973, 81, 363–373. [Google Scholar] [CrossRef]
- Simkiss, K.; Wilbur, K.M. Biomineralization: Cell Biology and Mineral Deposition; Academic Press: San Diego, CA, USA, 1989; p. 337. [Google Scholar]
- Vovelle, J.; Grasset, M.; Truchet, M. Sites of biomineralization in the polychaete Pomatoceros triqueter (Serpulidae) with comments on some other species. In Systematics, Biology and Morphology of World Polychaeta: Proceedings of the 2nd International Polychaete Conference Copenhagen 1986; Petersen, M.E., Kirkegaard, J.B., Eds.; Ophelia: Malmö, Sweden, 1991; Volume 5, pp. 661–667. [Google Scholar]
- Kupriyanova, E.K.; Macdonald, T.A.; Rouse, G.W. Phylogenetic relationships within Serpulidae (Sabellida, Annelida) inferred from molecular and morphological data. Zool. Scr. 2006, 35, 421–439. [Google Scholar] [CrossRef]
Species | Age | Microstructure | References |
---|---|---|---|
Neovermilia falcigera | Pleistocene | Irregularly oriented platy structure | [1] |
Spirorbis corallinae | Pleistocene | Homogeneous granular structure | [12] |
Spirorbis spirorbis | Pleistocene | Homogeneous granular structure | [12] |
Ditrupa brevis | Pliocene | Regularly ridged prismatic structure? (1); Irregularly oriented prismatic structure? (2) | [13] |
Ditrupa gracillima | Miocene | Regularly ridged prismatic structure (1); fine homogeneous granular structure (2) | [22] |
Hydroides elegans | Miocene | Fine homogeneous granular structure (1); lamello-fibriallar structure? (2) | [18] |
Placostegus polymorphus | Miocene | Simple prismatic structure | [18] |
Pomatoceros sp. | Miocene | Lamello-fibrillar structure | [18] |
Protula canavarii | Miocene | Irregularly oriented prismatic structure | [18] |
Serpula muricata | Miocene | Irregularly oriented prismatic structure | [18] |
Spiraserpula sp. | Miocene | Lamello-fibrillar structure | [18] |
Diplochaetetes mexicanus | Oligocene | Spherulitic prismatic structure; homogeneous structure composed of unoriented calcareous rods | [3] |
Serpula sp. | Oligocene | Irregularly oriented prismatic structure | [18] |
Ditrupa bartonensis | Eocene | Regularly ridged prismatic structure (1); simple preferentially orientated prismatic structure (2) | [23] |
Ditrupa strangulata | Eocene | Regularly ridged prismatic structure (1); fine homogeneous granular structure (2) | [22] |
Protula protensa | Eocene | Semi-ordered irregularly oriented prismatic structure | [18] |
Pyrgopolon mellevillei? | Eocene | Spherulitic prismatic structure (1); irregularly oriented prismatic structure (2) | [18] |
Rotularia nummularia | Eocene | Coarse angular crystal homogeneous structure (1); lamello-fibrillar structure (2) | [19] |
Rotularia spirulaea | Eocene | Coarse angular crystal homogeneous structure (1); lamello-fibrillar structure(2) | [19] |
Glomerula sp. | Cretaceous | Spherulitic prismatic structure | [2] |
Pentaditrupa subtorquata | Cretaceous | Spherulitic prismatic structure | [16] |
Pyrgopolon sp. A | Jurassic/Cretaceous | Prismatic (1); fine homogeneous granular structure (2) | [26] |
Pyrgopolon aff. nodulosum | Jurassic/Cretaceous | Prismatic (1); fine homogeneous granular structure (2) | [26] |
Filogranula tricristata | Jurassic | Coarse angular crystal homogeneous structure | [20] |
Glomerula sp. | Jurassic | Spherulitic prismatic structure | [2] |
Mucroserpula quinquangularis | Jurassic | Spherulitic prismatic structure (1); fine homogeneous granular structure (2) | [16] |
Nogrobs cf. vertebralis | Jurassic | Spherulitic prismatic structure | [20] |
Propomatoceros sp. | Jurassic | Fine homogeneous granular structure | [14] |
Serpula conformis | Jurassic | Fine homogeneous granular structure | [20] |
Serpula aff. convoluta | Jurassic | Simple prismatic structure | [20] |
Serpula etalensis | Jurassic | Aragonitic irregularly oriented prismatic structure | [21] |
Serpula limata | Jurassic | Fine homogeneous granular structure | [20] |
Serpula aff. subcrispa | Jurassic | Fine homogeneous granular structure | [20] |
Serpula aff. trigona | Jurassic | Spherulitic prismatic structure (1); fine homogeneous granular structure (2) | [20] |
Tetraserpula planorbiformis | Jurassic | Simple prismatic structure | [20] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vinn, O. Biomineralization of Polychaete Annelids in the Fossil Record. Minerals 2020, 10, 858. https://doi.org/10.3390/min10100858
Vinn O. Biomineralization of Polychaete Annelids in the Fossil Record. Minerals. 2020; 10(10):858. https://doi.org/10.3390/min10100858
Chicago/Turabian StyleVinn, Olev. 2020. "Biomineralization of Polychaete Annelids in the Fossil Record" Minerals 10, no. 10: 858. https://doi.org/10.3390/min10100858
APA StyleVinn, O. (2020). Biomineralization of Polychaete Annelids in the Fossil Record. Minerals, 10(10), 858. https://doi.org/10.3390/min10100858