Schrödinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels
Abstract
:1. Introduction
2. Effective Hamiltonians
2.1. The Concept of Open Quantum Systems
- {A.1}
- about the pure-state nature of the initial conditions. This must be guaranteed by the preparation of the system at ;
- {A.2}
- about the unitarity of the evolution requiring, due to the Stone theorem [13], the self-adjointness of the Hamiltonian in , ;
- {A.3}
2.2. The Feshbach’s Concept of Model Space
3. Antilinear Versus Nonlinear Interactions
3.1. Quantum -Symmetric Schrödinger Equations
3.2. The Turn of Attention to Classical Optics
3.3. The Turn of Attention to the Coupling of Channels
4. Nonlinear Schrödinger Equations on Complex-Plane Contours of the “Coordinate”
4.1. Linear Equations on the Complex Contours
4.2. Nonlinear Equations on the Complex Contours
- the latter two equations may be solved to determine the “correct” contour C,
- in a technically highly nontrivial manner, one can also guarantee that for one of the resulting contours, the “candidate for the anomalous quantum probability density” can be globally normalized to one, .
5. Effective Nonlinearities
5.1. Coupled Cluster Wave-Function Ansatz
5.2. Broader Context in Physics
6. Roots in Linear Theory
6.1. Pilot-Wave Approach
6.2. Solvable and Partially-Solvable Models
7. Roots in Phenomenology
8. Constructions Strategies
9. Analytical Solutions
9.1. Diagonal Case
9.2. Off-Diagonal Case
10. Discussion
11. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Messiah, A. Quantum Mechanics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1961; Volume I. [Google Scholar]
- Brody, D.C.; Houghston, L.F. Geometric Quantum Mechanics. J. Geom. Phys. 2001, 38, 19–53. [Google Scholar] [CrossRef]
- Bender, C.M. Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 2007, 70, 947. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 1998, 80, 5243. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Metric operator in pseudo-Hermitian quantum mechanics and the imaginary cubic potential. J. Phys. A Math. Gen. 2006, 39, 10171. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Pseudo-Hermitian representation of quantum mechanics. Int. J. Geom. Methods Mod. Phys. 2010, 7, 1191. [Google Scholar] [CrossRef]
- Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; Bagarello, F.; Gazeau, J.-P.; Szafraniec, F.H.; Znojil, M. (Eds.) John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015. [Google Scholar]
- Andrianov, A.A.; Ioffe, M.V.; Cannata, F.; Dedonder, J.-P. SUSY quantum mechanics with complex superpotentials and real energy spectra. Int. J. Mod. Phys. A 1999, 14, 2675–2688. [Google Scholar] [CrossRef]
- Znojil, M.; Cannata, F.; Bagchi, B.; Roychoudhury, R. Supersymmetry without hermiticity within PT symmetric quantum mechanics. Phys. Lett. B 2000, 483, 284–289. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian SUSY and singular PT-symmetrized oscillators. J. Phys. A Math. Gen. 2002, 35, 2341–2352. [Google Scholar] [CrossRef]
- Znojil, M.; Jakubsky, V. Supersymmetric quantum mechanics living on topologically nontrivial Riemann surfaces. Pramana J. Phys. 2009, 73, 397–404. [Google Scholar] [CrossRef]
- Mostafazadeh, A. Hilbert space structures on the solution space of Klein-Gordon type evolution equations. Class. Quantum Gravit. 2003, 20, 155–171. [Google Scholar] [CrossRef]
- Stone, M.H. On one-parameter unitary groups in Hilbert space. Ann. Math. 1932, 33, 643–648. [Google Scholar] [CrossRef]
- Moiseyev, N. Non-Hermitian Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Eleuch, H.; Rotter, I. Resonances in open quantum systems. Phys. Rev. A 2017, 95, 022117. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Nonlinear Wave Mechanics. Ann. Phys. 1976, 100, 62–93. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 1975, 44, 129–132. [Google Scholar] [CrossRef]
- Mielnik, B. Empty Bottle: The Revenge of Schrodinger’s Cat? J. Phys.Conf. Ser. 2017, 839, 012006. [Google Scholar] [CrossRef]
- Znojil, M. Non-selfadjoint operators in quantum physics: Ideas, people and trends. In Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 7–58. [Google Scholar]
- Znojil, M. Three-Hilbert-space formulation of Quantum Mechanics. Symmetry Integrability Geomi.Methods Appl. 2009, 5. [Google Scholar] [CrossRef]
- Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357–390. [Google Scholar] [CrossRef]
- Znojil, M. Linear representation of energy-dependent Hamiltonians (quant-ph/0403223). Phys. Lett. A 2004, 326, 70–76. [Google Scholar] [CrossRef]
- Cham, J. Top 10 physics discoveries of the last 10 years. Nat. Phys. 2015, 11, 799. [Google Scholar] [CrossRef]
- Bender, C.M.; Milton, K.A. Nonperturbative Calculation of Symmetry Breaking in Quantum Field Theory. Phys. Rev. D 1997, 55, R3255. [Google Scholar] [CrossRef]
- Buslaev, V.; Grechi, V. Equivalence of unstable anharmonic oscillators and double wells. J. Phys. A Math. Gen. 1993, 26, 5541–5549. [Google Scholar] [CrossRef]
- Musslimani, Z.H.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N. Optical Solitons in PT Periodic Potentials. Phys. Rev. Lett. 2008, 100, 030402. [Google Scholar] [CrossRef] [PubMed]
- Makris, M.G.; El-Ganainy, R.; Christodoulides, D.N.; Musslimani, Z.H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 2008, 100, 103904. [Google Scholar] [CrossRef] [PubMed]
- Zloshchastiev, K.G. Quantum-statistical approach to electromagnetic wave propagation and dissipation inside dielectric media and nanophotonic and plasmonic waveguides. Phys. Rev. B 2016, 94, 115136. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Sustainability of Environment-Assisted Energy Transfer in Quantum Photobiological Complexes. Annalen der Physik 2017, 529. [Google Scholar] [CrossRef]
- Snyder, A.W.; Mitchell, D.J. Mighty morphing spatial solitons and bullets. Opt. Lett. 1997, 22, 16–18. [Google Scholar] [CrossRef] [PubMed]
- Christodoulides, N.; Coskun, T.H.; Mitchell, M.; Segev, M. Multimode incoherent spatial solitons in logarithmically saturable nonlinear media. Phys. Rev. Lett. 1998, 80, 2310. [Google Scholar] [CrossRef]
- Znojil, M. Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schroedinger equation. Phys. Rev. A 2017, 96, 012127. [Google Scholar] [CrossRef]
- Konotop, V.V.; Yang, J.; Zezyulin, D.A. Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys. 2016, 88, 035002. [Google Scholar] [CrossRef]
- Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calculation of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field Theoretical Methods. J. Chem. Phys. 1966, 45, 4256. [Google Scholar] [CrossRef]
- Kümmel, H.G. A biography of the coupled cluster method. In Recent Progress in Many-Body Theories; Brandes, R.F., Brandes, T., Gernoth, K.A., Walet, N.R., Xian, Y., Eds.; World Scientific Publishing: Singapore, 2002; pp. 334–348. [Google Scholar]
- McClain, J.; Lischner, J.; Watson, T.; Matthews, D.A.; Ronca, E.; Louie, S.G.; Chan, G.K.L. Spectral functions of the uniform electron gas via coupled-cluster theory and comparison to theGWand related approximations. Phys. Rev. B 2016, 93, 235139. [Google Scholar] [CrossRef]
- Hagen, G.; Hjorth-Jensen, M.; Jansen, G.R.; Papenbrock, T. Emergent properties of nuclei fromab initiocoupled-cluster calculations. Phys. Scr. 2016, 91, 063006. [Google Scholar] [CrossRef]
- Acton, F.S. Numerical Methods That Work; Harper & Row: New York, NY, USA, 1970. [Google Scholar]
- Rüter, C.E.; Makris, K.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity-time symmetry in optics. Nat. Phys. 2010, 6, 192. [Google Scholar] [CrossRef]
- Znojil, M. Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato’s Exceptional Points. Symmetry 2016, 8, 52. [Google Scholar] [CrossRef]
- Cartarius, H.; Dast, D.; Haag, D.; Wunner, G.; Eichler, R.; Main, J. Stationary and dynamical solutions of the Gross-Pitaevskii equation for a Bose-Einstein condensate in a PT symmetric double well. Acta Polytech. 2013, 53, 259–267. [Google Scholar]
- Bender, C.M.; Hook, D.W.; Meisinger, P.N.; Wang, Q. Probability Density in the Complex Plane. Ann. Phys. 2010, 325, 2332–2362. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear Schrodinger equation. Phys. Rev. Lett. 2013, 110, 064105. [Google Scholar] [CrossRef] [PubMed]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable nonlocal nonlinear equations. Stud. Appl. Math. 2017, 139, 7–59. [Google Scholar] [CrossRef]
- Bagchi, B.; Modak, S.; Panigrahi, P.K.; Ruzicka, F.; Znojil, M. Exploring branched Hamiltonians for a class of nonlinear systems. Mod. Phys. Lett. A 2015, 30, 1550213. [Google Scholar] [CrossRef]
- Bishop, R.F. An overview of coupled cluster theory and its applications in physics. Theor. Chim. Acta 1991, 80, 95–148. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291. [Google Scholar] [CrossRef]
- Mielnik, B. Generalized quantum mechanics. Commun. Math. Phys. 1974, 37, 221–256. [Google Scholar] [CrossRef]
- Rosen, G. Dilatation covariance and exact solutions in local relativistic field theories. Phys. Rev. 1969, 183, 1186. [Google Scholar] [CrossRef]
- Rosen, G. Particle-like solutions to nonlinear complex scalar field theories with positive-definite energy densities. J. Math. Phys. 1968, 9, 996. [Google Scholar] [CrossRef]
- Enqvist, K.; Mazumdar, A. Cosmological consequences of MSSM flat directions. Phys. Rept. 2003, 380, 99. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.; Zloshchastiev, K.G. Singularity-free model of electric charge in physical vacuum: Non-zero spatial extent and mass generation. Central Eur. J. Phys. 2013, 11, 325–335. [Google Scholar] [CrossRef]
- Gulamov, I.E.; Nugaev, E.Y.; Smolyakov, M.N. Theory of U(1) gauged Q-balls revisited. Phys. Rev. D 2014, 89, 085006. [Google Scholar] [CrossRef]
- Gulamov, I.E.; Nugaev, E.Y.; Panin, A.G.; Smolyakov, M.N. Theory of U(1) gauged Q-balls revisited. Phys. Rev. D 2015, 92, 045011. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.; Makhmudov, A.; Zloshchastiev, K.G. Singularity-free model of electrically charged fermionic particles and gauged Q-balls. Phys. Rev. D 2016, 94, 096012. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Gaussons: Solitons Of The Logarithmic Schrodinger Equation. Phys. Scripta 1979, 20, 539. [Google Scholar] [CrossRef]
- Buljan, H.; Šiber, A.; Soljačić, M.; Schwartz, T.; Segev, M.; Christodoulides, D.N. Incoherent white light solitons in logarithmically saturable noninstantaneous nonlinear media. Phys. Rev. E 2003, 68, 036607. [Google Scholar] [CrossRef] [PubMed]
- De Martino, S.; Falanga, M.; Godano, C.; Lauro, G. Logarithmic Schrödinger-like equation as a model for magma transport. Europhys. Lett. 2003, 63, 472–475. [Google Scholar] [CrossRef]
- De Martino, S.; Lauro, G. Soliton like solutions for a capillary fluid. In Proceedings of the 12th conference on waves and stability in continuous media, Villasimius, Italy, 1–7 June 2003; Monaco, R., Pennisi, S., Rionero, S., Ruggeri, T., Eds.; World Scientific Publishing: Singapore, 2004; pp. 148–152. [Google Scholar]
- Hansson, T.; Anderson, D.; Lisak, M. Propagation of partially coherent solitons in saturable logarithmic media: A comparative analysis. Phys. Rev. A 2009, 80, 033819. [Google Scholar] [CrossRef]
- Hefter, E.F. Application of the nonlinear Schrodinger equation with a logarithmic inhomogeneous term to nuclear physics. Phys. Rev. A 1985, 32, 1201. [Google Scholar] [CrossRef]
- Kartavenko, V.G.; Gridnev, K.A.; Greiner, W. Nonlinear Effects in Nuclear Cluster Problem. Int. J. Mod. Phys. E 1998, 7, 287. [Google Scholar] [CrossRef]
- Yasue, K. Quantum Mechanics Of Nonconservative Systems. Ann. Phys. 1978, 114, 479. [Google Scholar] [CrossRef]
- Lemos, N.A. Dissipative forces and the algebra of operators in stochastic quantum mechanics. Phys. Lett. A 1980, 78, 239. [Google Scholar] [CrossRef]
- Brasher, J.D. Nonlinear-wave mechanics, information-theory, and thermodynamics. Int. J. Theor. Phys. 1991, 30, 979–984. [Google Scholar] [CrossRef]
- Schuch, D. Nonunitary connection between explicitly time-dependent and nonlinear approaches for the description of dissipative quantum systems. Phys. Rev. A 1997, 55, 935. [Google Scholar] [CrossRef]
- Davidson, M.P. Comments on the nonlinear Schrodinger equation. Nuov. Cim. B 2001, 116, 1291. [Google Scholar]
- Lopez, J.L. Nonlinear Ginzburg-Landau-type approach to quantum dissipation. Phys. Rev. E 2004, 69, 026110. [Google Scholar] [CrossRef] [PubMed]
- Avdeenkov, A.V.; Zloshchastiev, K.G. Quantum Bose liquids with logarithmic nonlinearity: Self-sustainability and emergence of spatial extent. J. Phys. B At. Mol. Opt. Phys. 2011, 44, 195303. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation. Eur. Phys. J. B 2012, 85, 273. [Google Scholar] [CrossRef]
- Bouharia, B. Stability of logarithmic Bose—Einstein condensate in harmonic trap. Mod. Phys. Lett. B 2015, 29, 1450260. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Stability and Metastability of Trapless Bose-Einstein Condensates and Quantum Liquids. Z. Naturforsch. A 2017, 72, 677–687. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Gravit. Cosmol. 2010, 16, 288–297. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Spontaneous symmetry breaking and mass generation as built-in phenomena in logarithmic nonlinear quantum theory. Acta Phys. Pol. B 2011, 42, 261–292. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Vacuum Cherenkov effect in logarithmic nonlinear quantum theory. Phys. Lett. A 2011, 375, 2305–2308. [Google Scholar] [CrossRef]
- Scott, T.C.; Zhang, X.; Mann, R.B.; Fee, G.J. Canonical reduction for dilatonic gravity in 3+1 dimensions. Phys. Rev. D 2016, 93, 084017. [Google Scholar] [CrossRef]
- Unruh, W.G. Experimental black-hole evaporation? Phys. Rev. Lett. 1981, 46, 1351. [Google Scholar] [CrossRef]
- Jacobson, T.A.; Volovik, G.E. Event horizons and ergoregions in 3 He. Phys. Rev. D 1998, 58, 064021. [Google Scholar] [CrossRef]
- Visser, M. Acoustic black holes: Horizons, ergospheres and Hawking radiation. Class. Quantum Gravit. 1998, 15, 1767. [Google Scholar] [CrossRef]
- Zloshchastiev, K.G. Acoustic phase lenses in superfluid helium as models of composite spacetimes in general relativity: Classical and quantum features. Acta Phys. Pol. B 1999, 30, 897–905. [Google Scholar]
- Volovik, G.E. The Universe in a Helium Droplet; International Series of Monographs on Physics; Oxford University Press: Oxford, UK, 2003; Volume 117, pp. 1–507. [Google Scholar]
- Bohm, D. A suggested interpretation of the quantum theory in terms of “hidden” variables. Phys. Rev. 1952, 35, 166–193. [Google Scholar] [CrossRef]
- Styer, D.F.; Balkin, M.S.; Becker, K.M.; Burns, M.R.; Dudley, C.E.; Forth, S.T.; Rinkoski, M.T. Nine formulations of quantum mechanics. Am. J. Phys. 2002, 70, 288–297. [Google Scholar] [CrossRef]
- Philippidis, C.; Dewdney, C.; Hiley, B.J. Quantum interference and the quantum potential. Nuovo Cim. B 1979, 52, 15–28. [Google Scholar] [CrossRef]
- Stapp, H.P. The Undivided Universe: An ontological interpretation of Quantum Theory. Am. J. Phys. 1994, 62, 958–960. [Google Scholar]
- Znojil, M. Comment on the Green function for the anharmonic-oscillators. Phys. Rev. D 1982, 26, 3750–3751. [Google Scholar] [CrossRef]
- Lévai, G. A search for shape-invariant solvable potentials. J. Phys. A Math. Gen. 1989, 22, 689. [Google Scholar] [CrossRef]
- Lévai, G.; Znojil, M. Systematic search for PT-symmetric potentials with real energy spectra. J. Phys. A Math. Gen. 2000, 33, 7165–7180. [Google Scholar] [CrossRef]
- Ushveridze, A.G. Quasi-Exactly Solvable Models in Quantum Mechanics; IOP: Bristol, UK, 1994. [Google Scholar]
- Znojil, M. Harmonic oscillator well with a screened Coulombic core is quasiexactly solvable. J. Phys. A Math. Gen. 1999, 32, 4563–4570. [Google Scholar] [CrossRef]
- Znojil, M. Non-Hermitian matrix description of the PT-symmetric anharmonic oscillators. J. Phys. A Math. Gen. 1999, 32, 7419–7428. [Google Scholar] [CrossRef]
- Flessas, G.P. On the Schrodinger equation for the x2 + λx2/(1 + gx2) interaction. Phys. Lett. A 1981, 83, 121–122. [Google Scholar] [CrossRef]
- Znojil, M. Potential r2 + λr2/(1 + gr2) and the analytic continued fractions. J. Phys. A Math. Gen. 1983, 16, 293–301. [Google Scholar] [CrossRef]
- Roy, P.; Roychoudhury, R. New exact solutions of the non-polynomial oscillator V(x) = x2 + λx2(1 + gx2) and supersymmetry. Phys. Lett. A 1987, 122, 275–279. [Google Scholar] [CrossRef]
- Fernández, F.M. Convergent power-series solutions to the Schrodinger equation with the potential x2 + λx2/(1 + gx2). Phys. Lett. A 1991, 160, 116–118. [Google Scholar] [CrossRef]
- Znojil, M. Quasi-exact states in the Lanczos recurrent picture. Phys. Lett. A 1991, 161, 191–196. [Google Scholar] [CrossRef]
- Znojil, M.; Leach, P.G.L. On the elementary Schrodinger bound states and their multiplets. J. Math. Phys. 1992, 33, 2785–2794. [Google Scholar] [CrossRef]
- Znojil, M. Tridiagonal PT-symmetric N-by-N Hamiltonians and a fine-tuning of their observability domains in the strongly non-Hermitian regime. J. Phys. A Math. Theor. 2007, 43, 13131–13148. [Google Scholar] [CrossRef]
- Turbiner, A. One-dimensional quasi-exactly solvable Schrödinger equations. Phys. Rep. 2016, 642, 1–71. [Google Scholar] [CrossRef]
- Newton, R.G. Scattering Theory of Waves and Particles; Springer: Berlin, Germany, 2013. [Google Scholar]
- Greiner, W. Relativistic Quantum Mechanics; Springer: Berlin, Germany, 2000; p. 339. [Google Scholar]
- Dynkin, E.B. On the representation of the series log (ex ey) for noncommutative x, y by commutators. Math. Sbornik 1949, 25, 155–162. [Google Scholar]
- Babin, A.; Figotin, A. Some mathematical problems in a neoclassical theory of electric charges. Discret. Contin. Dyn. Syst. 2010, A27, 1283–1326. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znojil, M.; Růžička, F.; Zloshchastiev, K.G. Schrödinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels. Symmetry 2017, 9, 165. https://doi.org/10.3390/sym9080165
Znojil M, Růžička F, Zloshchastiev KG. Schrödinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels. Symmetry. 2017; 9(8):165. https://doi.org/10.3390/sym9080165
Chicago/Turabian StyleZnojil, Miloslav, František Růžička, and Konstantin G. Zloshchastiev. 2017. "Schrödinger Equations with Logarithmic Self-Interactions: From Antilinear PT-Symmetry to the Nonlinear Coupling of Channels" Symmetry 9, no. 8: 165. https://doi.org/10.3390/sym9080165