Lie Symmetry Classification of the Generalized Nonlinear Beam Equation
Abstract
1. Introduction
2. Lie Symmetry Classification
3. Symmetry Reduction and Exact Solutions
4. Conclusions and Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ames, W.F. Nonlinear Partial Differential Equations in Engineering; Academic: New York, NY, USA, 1972; Volume II, pp. 50–52. [Google Scholar]
- Ames, W.F.; Adams, E.; Lohner, R.G. Group properties of utt = [f(u)ux]x. Int. J. Non-Linear Mech. 1981, 16, 439–447. [Google Scholar] [CrossRef]
- Galaktionov, V.A. The formation of shocks and fundamental solution of a fourth-order quasilinear Boussinesq-type equation. Nonlinearity 2009, 22, 239–257. [Google Scholar] [CrossRef]
- Favini, A.; Goldstein, G.R.; Goldstein, J.A.; Romanelli, S. Classification of general Wentzell boundary conditions for fourth order operators in one space dimension. J. Math. Anal. Appl. 2007, 335, 219–235. [Google Scholar] [CrossRef][Green Version]
- McKenna, P.J.; Walter, W. Travelling waves in a suspension bridges. SIAM J. Appl. Math. 1990, 50, 703–715. [Google Scholar] [CrossRef]
- Ammann, O.H.; Karman, T.V.; Woodruff, G.B. The Failure of the Tacoma Narrow Bridge; Federal Works Agency: Washington, DC, USA, 1941. [Google Scholar]
- Champreys, A.R.; McKenna, P.J.; Zegeling, P.A. Solitary waves in nonlinear beam equations: Stability, fission and fusion. Nonlinear Dynam. 2000, 21, 31–53. [Google Scholar] [CrossRef]
- McKenna, P.J.; Walter, W. Nonlinear oscillations in a suspension bridge. Arch. Ration. Mech. Anal. 1987, 98, 167–177. [Google Scholar] [CrossRef]
- Chen, Y.; McKenna, P.J. Traveling waves in a nonlinearly suspended beam: Theoretical results and numerical observations. J. Differ. Equ. 1997, 136, 325–355. [Google Scholar] [CrossRef]
- Chen, Y.; McKenna, P.J. Traveling waves in a nonlinearly suspended beam: Some computational results and four open questions. Phil. Trans. R. Soc. Lond. A 1997, 355, 2175–2184. [Google Scholar] [CrossRef]
- Choy, Y.S.; Jen, K.S.; McKenna, P.J. The structure of the solution set for periodic oscillations in a suspension bridge model. IMA J. Appl. Math. 1991, 47, 283–306. [Google Scholar] [CrossRef]
- Humphreys, L.D. Numerical mountain pass solutions of a suspension bridge equation. Nonlinear Anal. TMA 1997, 35, 1811–1826. [Google Scholar] [CrossRef]
- Lazer, A.C.; McKenna, P.J. Large Amplitude periodic oscillation in suspension bridges: Some new connections with nonlinear analysis. SIAM Rev. 1990, 32, 537–578. [Google Scholar] [CrossRef]
- Humphreys, L.D.; McKenna, P.J. Multiple periodic solutions for a nonlinear suspension bridge equation. IMA J. Appl. Math. 1999, 63, 37–49. [Google Scholar] [CrossRef]
- Doole, S.H.; Hogan, S.J. The nonlinear dynamics of suspension bridges under harmonic forcing. Appl. Nonlinear Math. Rep. 1996, 76, 127–128. [Google Scholar]
- Doole, S.H.; Hogan, S.J. A piecewise linear suspension bridge model nonlinear dynamics and orbit continuation. Dynam. Stabil. Syst. 1996, 11, 19–47. [Google Scholar] [CrossRef]
- Bruzón, M.S.; Camacho, J.C.; Gandarias, M.L. Similarity reductions of a nonlinear model for vibrations of beams. PAMM Proc. Appl. Math. Mech. 2007, 7, 2040063–2040064. [Google Scholar] [CrossRef]
- Camacho, J.C.; Bruzón, M.S.; Ramírez, J.; Gandarias, M.L. Exact travelling wave solutions of a beam equation. J. Nonlinear Math. Phys. 2011, 18, 33–49. [Google Scholar] [CrossRef]
- Gao, Y.X. Quasi-periodic Solutions of the General Nonlinear Beam Equations. Commun. Math. Res. 2012, 28, 51–64. [Google Scholar]
- Ovsiannikov, L.V. Group properties of the nonlinear heat-conduction equation. Dokl. Akad. Nauk SSSR 1959, V.125, 492–495. (In Russian) [Google Scholar] [PubMed]
- Ovsiannikov, L.V. Group Analysis of Differential Equations; Academic Press: New York, NY, USA, 1982. [Google Scholar]
- Bluman, G.; Cheviakov, A.; Anco, S. Applications of Symmetry Methods to Partial Differential Equations; Springer: Berlin, Germany, 2010. [Google Scholar]
- Barone, A.; Esposito, F.; Magee, C.G.; Scott, A.C. Theory and applications of the sine-Gordon equation. Riv. Nuovo Cimento 1971, 1, 227–267. [Google Scholar] [CrossRef]
- Arrigo, D.J. Group properties of uxx − uyy = f(u). Int. J. Non-Linear Mech. 1991, 26, 619–629. [Google Scholar] [CrossRef]
- Pucci, E.; Salvatori, M.C. Group properties of a class of semilinear hyperbolic equations. Int. J. Non-Linear Mech. 1986, 21, 147–155. [Google Scholar] [CrossRef]
- Torrisi, M.; Valenti, A. Group properties and invariant solutions for infinitesimal transformations of a nonlinear wave equation. Int. J. Non-Linear Mech. 1985, 20, 135–144. [Google Scholar] [CrossRef]
- Donato, A. Similarity analysis and nonlinear wave propagation. Int. J. Non-Linear Mech. 1987, 22, 307–314. [Google Scholar] [CrossRef]
- Ibragimov, N.H.; Torrisi, M.; Valenti, A. Preliminary group classification of equations vtt = f(x, vx)vxx + g(x, vx). J. Math. Phys. 1991, 32, 2988–2995. [Google Scholar] [CrossRef]
- Ibragimov, N.H. (Ed.) Lie Group Analysis of Differential Equations—Symmetries, Exact Solutions and Conservation Laws, V.1.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Oron, A.; Rosenau, P. Some symmetries of the nonlinear heat and wave equations. Phys. Lett. A 1986, 118, 172–176. [Google Scholar] [CrossRef]
- Chikwendu, S.C. Non-linear wave propagation solutions by Fourier transform perturbation. Int. J. Non-Linear Mech. 1981, 16, 117–128. [Google Scholar] [CrossRef]
- Gandarias, M.L.; Torrisi, M.; Valenti, A. Symmetry classification and optimal systems of a non-linear wave equation. Int. J. Non-Linear Mech. 2004, 39, 389–398. [Google Scholar] [CrossRef]
- Pucci, E. Group analysis of the equation utt + λuxx = g(u, ux). Riv. Mat. Univ. Parma 1987, 12, 71–87. [Google Scholar]
- Bluman, G.W.; Cheviakov, A.F. Nonlocally related systems, linearization and nonlocal symmetries for the nonlinear wave equation. J. Math. Anal. Appl. 2007, 333, 93–111. [Google Scholar] [CrossRef]
- Bluman, G. W.; Kumei, S. Symmetries and Differential Equations; Springer: Berlin, Germany, 1989. [Google Scholar]
- Bluman, G.W.; Temuerchaolu; Sahadevan, R. Local and nonlocal symmetries for nonlinear telegraph equation. J. Math. Phys. 2005, 46, 023505. [Google Scholar] [CrossRef]
- Huang, D.J.; Ivanova, N.M. Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations. J. Math. Phys. 2007, 48, 073507. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S.G. Group properties of generalized quasi-linear wave equations. J. Math. Anal. Appl. 2010, 366, 460–472. [Google Scholar] [CrossRef]
- Huang, D.J.; Zhou, S.G. Group-theoretical analysis of variable coefficient nonlinear telegraph equations. Acta Appl. Math. 2012, 117, 135–183. [Google Scholar] [CrossRef]
- Lahno, V.; Zhdanov, R.; Magda, O. Group classification and exact solutions of nonlinear wave equations. Acta Appl. Math. 2006, 91, 253–313. [Google Scholar] [CrossRef]
- Sophocleous, C.; Kingston, J.G. Cyclic symmetries of one-dimensional non-linear wave equations. Int. J. Non-Linear Mech. 1999, 34, 531–543. [Google Scholar] [CrossRef]
- Suhubi, E.S.; Bakkaloglu, A. Group properties and similarity solutions for a quasi-linear wave equation in the plane. Int. J. Non-Linear Mech. 1991, 26, 567–584. [Google Scholar] [CrossRef]
- Vasilenko, O.F.; Yehorchenko, I.A. Group classification of multidimensional nonlinear wave equations. Proc. Inst. Math. NAS Ukr. 2001, 36, 63–66. [Google Scholar]
- Cherniha, R.; Serov, M.; Rassokha, I. Lie symmetries and form-preserving transformations of reaction-diffusion-convection equations. J. Math. Anal. Appl. 2008, 342, 1363–1379. [Google Scholar] [CrossRef]
- Basarab-Horwath, P.; Lahno, V.I.; Zhdanov, R.Z. The structure of Lie algebras and the classification problem for partial differential equations. Acta Appl. Math. 2001, 69, 43–94. [Google Scholar] [CrossRef]
- Zhdanov, R.Z.; Lahno, V.I. Group classification of heat conductivity equations with a nonlinear source. J. Phys. A 1999, 32, 7405–7418. [Google Scholar] [CrossRef]
- Gazeau, J.P.; Winternitza, P. Symmetries of variable coefficient Korteweg-de Vries equations. J. Math. Phys. 1992, 33, 4087–4102. [Google Scholar] [CrossRef]
- Popovych, R.O.; Kunzinger, M.; Eshraghi, H. Admissible point transformations and normalized classes of nonlinear Schrödinger equations. Acta Appl. Math. 2010, 109, 315–359. [Google Scholar] [CrossRef]
- Nikitin, A.G.; Popovych, R.O. Group classification of nonlinear Schrödinger equations. Ukr. Math. J. 2001, 53, 1053–1060. [Google Scholar] [CrossRef]
- Popovych, R.O.; Ivanova, N.M. New results on group classification of nonlinear diffusion-convection equations. J. Phys. A 2004, 37, 7547–7565. [Google Scholar] [CrossRef]
- Ivanova, N.M.; Popovych, R.O.; Sophocleous, C. Group analysis of variable coefficient diffusion-convection equations. I. Enhanced group classification. Lobachevskii J. Math. 2010, 31, 100–122. [Google Scholar] [CrossRef]
- Huang, D.J.; Yang, Q.M.; Zhou, S.G. Lie symmetry classification and equivalence transformation of variable coefficient nonlinear wave equations with power nonlinearities. Chin. J. Contemp. Math. 2012, 33, 205–214. [Google Scholar]
- Huang, D.J.; Yang, Q.M.; Zhou, S.G. Conservation law classification of variable coefficient nonlinear wave equation with power Nonlinearity. Chin. Phys. B 2011, 20, 070202. [Google Scholar] [CrossRef]
- Huang, D.J.; Ivanova, N.M. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations. J. Differ. Equ. 2016, 260, 2354–2382. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie symmetries of nonlinear multidimensional reaction-diffusion systems: I. J. Phys. A 2000, 33, 267–282. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie symmetries of nonlinear multidimensional reaction-diffusion systems: II. J. Phys. A 2003, 36, 405–425. [Google Scholar] [CrossRef]
- Cherniha, R.; King, J.R. Lie symmetries and conservation laws of nonlinear multidimensional reaction-diffusion systems with variable diffusivities. IMA J. Appl. Math. 2006, 71, 391–408. [Google Scholar] [CrossRef]
- Cherniha, R.; Myroniuk, L. Lie Symmetries and Exact Solutions of the Generalized Thin Film Equation. J. Phys. Math. 2010, 2, P100508:1–P100508:19. [Google Scholar] [CrossRef]
- Olver, P.J. Application of Lie Groups to Differential Equations; Springer: New York, NY, USA, 1986. [Google Scholar]
- Patera, J.; Winternitz, P. Subalgebras of real three- and four-dimensional Lie algebras. J. Math. Phys. 1977, 18, 1449–1455. [Google Scholar] [CrossRef]
- Malfliet, W.; Hereman, W. The tanh method. I. Exact solutions of nonlinear evolution and wave equations. Phys. Scr. 1996, 54, 563–568. [Google Scholar] [CrossRef]
- Fan, E.G. Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 2000, 277, 212–218. [Google Scholar] [CrossRef]
N | Basis of A | |||
---|---|---|---|---|
1 | ∀ | ∀ | ∀ | |
2 | ∀ | 0 | 0 | |
3 | 0 | 0 | ||
4 | 0 | |||
5 | ||||
6 | ||||
7 | ||||
8 | ||||
9 | 0 | 0 | ||
10 | 0 | |||
11 | 0 | |||
12 | 0 | 0 | ||
13 | 0 | |||
14 | ||||
15 | 1 | 0 | 0 | |
where | ||||
16 | 1 | d | ||
where |
N | Ansatz for | Reduced ODE | ||
---|---|---|---|---|
1 | x | |||
2 | t | |||
3 | ||||
4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Li, X.; Yu, S. Lie Symmetry Classification of the Generalized Nonlinear Beam Equation. Symmetry 2017, 9, 115. https://doi.org/10.3390/sym9070115
Huang D, Li X, Yu S. Lie Symmetry Classification of the Generalized Nonlinear Beam Equation. Symmetry. 2017; 9(7):115. https://doi.org/10.3390/sym9070115
Chicago/Turabian StyleHuang, Dingjiang, Xiangxiang Li, and Shunchang Yu. 2017. "Lie Symmetry Classification of the Generalized Nonlinear Beam Equation" Symmetry 9, no. 7: 115. https://doi.org/10.3390/sym9070115
APA StyleHuang, D., Li, X., & Yu, S. (2017). Lie Symmetry Classification of the Generalized Nonlinear Beam Equation. Symmetry, 9(7), 115. https://doi.org/10.3390/sym9070115