Exploiting the Formation of Maximal Cliques in Social Networks
Abstract
:1. Introduction
1.1. Background
1.2. Related Work
1.3. Contributions
1.4. Paper Organization
2. Problem Statement
2.1. Graph Model and Maximal Clique
2.2. Problem Descriptions
3. Detecting Bases of Maximal Cliques Based on Formal Concept Analysis
3.1. Detection Approach
3.2. Topological Structure Analysis of a Social Graph
- 1.
- is a topology for V, and is a topological space for V;
- 2.
- is a base for the topology .
3.3. Detection Theorem
3.4. Practical Applicability
4. Case Study
4.1. Dataset
4.2. Results
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Conte, A.; De Virgilio, R.; Maccioni, A.; Patrignani, M.; Torlone, R. Finding All Maximal Cliques in Very Large Social Networks. In Proceedings of the Extending Database Technology (EDBT), Bordeaux, France, 15–18 March 2016; pp. 173–184. [Google Scholar] [CrossRef]
- Xu, Y.; Cheng, J.; Fu, A.W.C. Distributed Maximal Clique Computation and Management. IEEE Trans. Serv. Comput. 2016, 9, 110–122. [Google Scholar] [CrossRef]
- Modani, N.; Dey, K. Large Maximal Cliques Enumeration in Large Sparse Graphs. In Proceedings of the 17th ACM conference on Information and knowledge management, Napa Valley, CA, USA, 26–30 October 2008; pp. 1377–1378. [Google Scholar]
- Eppstein, D.; Loffler, M.; Strash, D. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal Time. In Proceedings of the 21st International Symposium on Algorithms and Computation, Jeju Island, Korea, 15–17 December 2010; pp. 403–414. [Google Scholar]
- Cheng, J.; Zhu, L.; Ke, Y.; Chu, S. Fast Algorithms for Maximal Clique Enumeration with Limited Memory. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 12–16 August 2012; pp. 1240–1248. [Google Scholar]
- Goodrich, M.T.; Pszona, P. External-Memory Network Analysis Algorithms for Naturally Sparse Graphs. In Proceedings of the 19th Europe Conference on Algorithms, Saarbrücken, Germany, 5–9 September 2011; pp. 664–676. [Google Scholar]
- Du, N.; Wu, B.; Xu, L.; Wang, B.; Xin, P. Parallel Algorithm for Enumerating Maximal Cliques in Complex Network. In Mining Complex Data; Springer: Berlin/Heidelberg, Germany, 2009; pp. 207–221. [Google Scholar]
- Schmidt, M.C.; Samatova, N.F.; Thomas, K.; Park, B.H. A scalable, parallel algorithm for maximal clique enumeration. J. Parallel Distrib. Comput. 2009, 69, 417–428. [Google Scholar] [CrossRef]
- Hao, F.; Min, G.; Pei, Z.; Park, D.S.; Yang, L.T. K-clique Communities Detection in Social Networks based on Formal Concept Analysis. IEEE Syst. J. 2017, 11, 250–259. [Google Scholar] [CrossRef]
- Hao, F.; Park, D.S.; Min, G.; Jeong, Y.S.; Park, J.H. K-clique Mining in Dynamic Social Networks based on Triadic Formal Concept Analysis. Neurocomputing 2016, 209, 57–66. [Google Scholar] [CrossRef]
- Baralis, E.; Cagliero, L.; Cerquitelli, T.; D’Elia, V.; Garza, P. Expressive generalized itemsets. Inform. Sci. 2014, 278, 327–343. [Google Scholar] [CrossRef]
- Cagliero, L.; Cerquitelli, T.; Garza, P.; Grimaudo, L. Misleading generalized itemset discovery. Expert Syst. Appl. 2014, 41, 1400–1410. [Google Scholar] [CrossRef]
- Calders, T.; Dexters, N.; Gillis, J.J.M.; Goethals, B. Mining frequent itemsets in a stream. Inform. Syst. 2014, 39, 233–255. [Google Scholar] [CrossRef]
- Hamrouni, T.; Ben Yahia, S.; Mephu Nguifo, E. Sweeping the disjunctive search space towards mining new exact concise representations of frequent itemsets. Data Knowledge Eng. 2009, 68, 1091–1111. [Google Scholar] [CrossRef]
- Agrawal, R.; Imielinski, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; pp. 207–216. [Google Scholar]
- Han, J.; Cheng, H.; Xin, D.; Yan, X. Frequent pattern mining: Current status and future directions. Data Min. Knowl. Discov. 2007, 15, 55–86. [Google Scholar] [CrossRef]
- Gharib, T.F. An efficient algorithm for mining frequent maximal and closed itemsets. Int. J. Hybrid Intell. Syst. 2009, 6, 147–153. [Google Scholar] [CrossRef]
- Grahne, G.; Zhu, J.F. Fast Algorithms for Frequent Itemset Mining Using FP-Trees. IEEE Trans. Knowl. Data Eng. 2005, 17, 1347–1362. [Google Scholar] [CrossRef]
- Zaki, M.J.; Hsiao, C.J. Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Trans. Knowl. Data Eng. 2005, 17, 462–478. [Google Scholar] [CrossRef]
- Vo, B.; Hong, T.P.; Le, B. A lattice-based approach for mining most generalization association rules. Knowl.-Based Syst. 2013, 45, 20–30. [Google Scholar] [CrossRef]
- Vo, B.; Coenen, F.; Le, B. A new method for mining Frequent Weighted Itemsets based on WIT-trees. Expert Syst. Appl. 2013, 40, 1256–1264. [Google Scholar] [CrossRef]
- Tseng, V.S.; Shie, B.E.; Wu, C.W.; Yu, P.S. Efficient Algorithms for Mining High Utility Itemsets from Transactional Databases. IEEE Trans. Knowl. Data Eng. 2013, 25, 1772–1777. [Google Scholar] [CrossRef]
- Pei, Z.; Ruan, D.; Meng, D.; Liu, Z. Formal concept analysis based on the topology for attributes of a formal context. Inform. Sci. 2013, 236, 66–82. [Google Scholar] [CrossRef]
- Syau, Y.-R.; Lin, E.-B. Neighborhood systems and covering approximation spaces. Knowl.-Based Syst. 2014, 66, 61–67. [Google Scholar] [CrossRef]
- Qin, K.; Gao, Y.; Pei, Z. On covering rough sets. In Rough Sets and Knowledge Technology, Lecture Notes in Artificial Intelligence; Yao, J.T., Lingras, P., Wu, W.Z., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4481, pp. 34–41. [Google Scholar]
- Zhu, W. Relationship between generalized rough sets based on binary relation and covering. Inform. Sci. 2009, 179, 210–225. [Google Scholar] [CrossRef]
- Hao, F.; Pei, Z.; Park, D.S.; Yang, L.T.; Jeong, Y.S.; Park, J.H. Iceberg Clique Queries in Large Graphs. Neurocomputing 2017, 256, 101–110. [Google Scholar] [CrossRef]
- Meo, P.D.; Musial-Gabrys, K.; Rosaci, D.; Sarne, G.M.; Aroyo, L. Using Centrality Measures to Predict Helpfulness-Based Reputation in Trust Networks. ACM Trans. Int. Technol. 2017, 17, 8:1–8:20. [Google Scholar] [CrossRef]
- Golbeck, J.; Parsia, B.; Hendler, J. Trust networks on the semantic web. In Cooperative Information Agents VII; Springer: Berlin/Heidelberg, Germany, 2013; pp. 238–249. [Google Scholar]
- Jamali, M.; Abolhassani, H. Different aspects of social network analysis. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006), Hong Kong, China, 18–22 December 2006; pp. 66–72. [Google Scholar]
- Ghosh, A.; Mahdian, M.; Reeves, D.M.; Pennock, D.M.; Fugger, R. Mechanism Design on Trust Networks. In Proceedings of the 3rd International Workshop on Web and Internet Economics, San Diego, CA, USA, 12–14 December 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 257–268. [Google Scholar]
- Zhang, Q.; Zhu, C.; Yang, L.T.; Chen, Z.; Zhao, L.; Li, P. An Incremental CFS Algorithm for Clustering Large Data in Industrial Internet of Things. IEEE Trans. Ind. Inform. 2017, 13, 1193–1201. [Google Scholar] [CrossRef]
- Zhou, Z.; He, Y. Collaborative Filtering Recommendation Algorithm Based on Users of Maximum Similar Clique. In Proceedings of the 2013 International Conference on Information Science and Cloud Computing Companion, Guangzhou, China, 7–8 December 2013; pp. 852–857. [Google Scholar]
- He, T.; Chan, K.C.C. Evolutionary Graph Clustering for Protein Complex Identification. IEE/ACM Trans. Comput. Biol. Bioinform. 2016, PP, 1. [Google Scholar] [CrossRef] [PubMed]
- The Dataset of Collaborations between Scientists. Available online: http://www-personal.umich.edu/~mejn/netdata/ (accessed on 17 June 2017).
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
1 | X | ||||||
2 | X | X | X | X | |||
3 | X | X | X | ||||
4 | X | X | |||||
5 | X | X | X | X | |||
6 | X | X | X | ||||
7 | X | X |
1 | 3 | 6 | |||
---|---|---|---|---|---|
1 | X | ||||
2 | X | X | X | ||
3 | X | X | |||
4 | X | ||||
5 | X | X | X | ||
6 | X | X | |||
7 | X |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, F.; Park, D.-S.; Pei, Z. Exploiting the Formation of Maximal Cliques in Social Networks. Symmetry 2017, 9, 100. https://doi.org/10.3390/sym9070100
Hao F, Park D-S, Pei Z. Exploiting the Formation of Maximal Cliques in Social Networks. Symmetry. 2017; 9(7):100. https://doi.org/10.3390/sym9070100
Chicago/Turabian StyleHao, Fei, Doo-Soon Park, and Zheng Pei. 2017. "Exploiting the Formation of Maximal Cliques in Social Networks" Symmetry 9, no. 7: 100. https://doi.org/10.3390/sym9070100
APA StyleHao, F., Park, D. -S., & Pei, Z. (2017). Exploiting the Formation of Maximal Cliques in Social Networks. Symmetry, 9(7), 100. https://doi.org/10.3390/sym9070100