Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making
Abstract
:1. Introduction
2. Some Concepts of SVNSs
- (1)
- If E(s1) > E(s2), then s1 s2,
- (2)
- If E(s1) = E(s2) and H(s1) > H(s2), then s1 s2,
- (3)
- If E(s1) = E(s2) and H(s1) = H(s2), then s1 = s2.
3. Some Single-Valued Neutrosophic Dombi Operations
4. Dombi Weighted Aggregation Operators of SVNNs
- (1)
- Reducibility: When w = (1/n, 1/n, …, 1/n), it is obvious that there exists
- (2)
- Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, …, n). Then, SVNDWAA(s1, s2, …, sn) = s.
- (3)
- Commutativity: Let the SVNS (s1’, s2’, …, sn’) be any permutation of (s1, s2, …, sn). Then, there is SVNDWAA(s1’, s2’, …, sn’) = SVNDWAA(s1, s2, …, sn).
- (4)
- Boundedness: Let smin = min(s1, s2, …, sn) and smax = max(s1, s2, …, sn). Then, smin ≤ SVNDWAA(s1, s2, …, sn) ≤ smax.
- (1)
- Reducibility: When the weight vector is w = (1/n, 1/n, …, 1/n), it is obvious that there exists the following result:
- (2)
- Idempotency: Let all the SVNNs be sj = <tj, uj, vj> = s (j = 1, 2, …, n). Then, SVNDWGA(s1, s2, …, sn) = s.
- (3)
- Commutativity: Let the SVNS (s1’, s2’, …, sn’) be any permutation of (s1, s2, …, sn). Then, there is SVNDWGA(s1’, s2’, …, sn’) = SVNDWGA(s1, s2, …, sn).
- (4)
- Boundedness: Let smin = min(s1, s2, …, sn) and smax = max(s1, s2, …, sn). Then, smin ≤ SVNDWGA(s1, s2, …, sn) ≤ smax.
5. MADM Method Using the SVNDWAA Operator or the SVNDWGA Operator
6. Illustrative Example
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy Sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Atanassov, K.; Gargov, G. Interval-valued intuitionistic fuzzy sets. Fuzzy Sets Syst. 1989, 31, 343–349. [Google Scholar] [CrossRef]
- Smarandache, F. Neutrosophy: Neutrosophic Probability, Set, and Logic: Analytic Synthesis & Synthetic Analysis; American Research Press: Rehoboth, DE, USA, 1998. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multisp. Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Ye, J. A multicriteria decision-making method using aggregation operators for simplified neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 2459–2466. [Google Scholar] [CrossRef]
- Bustince, H.; Barrenechea, E.; Fernandez, J.; Pagola, M.; Montero, J. The origin of fuzzy extensions. In Springer Handbook of Computational Intelligence; Springer: Heidelberg, Germany, 2015; pp. 89–112. [Google Scholar]
- Alcantud, J.C.R. Some formal relationships among soft sets, fuzzy sets, and their extensions. Int. J. Approx. Reason. 2016, 68, 45–53. [Google Scholar] [CrossRef]
- Ye, J. Multicriteria decision-making method using the correlation coefficient under single-value neutrosophic environment. Int. J. Gen. Syst. 2013, 42, 386–394. [Google Scholar] [CrossRef]
- Majumdar, P.; Samant, S.K. On similarity and entropy of neutrosophic sets. J. Intell. Fuzzy Syst. 2014, 26, 1245–1252. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Zhang, H.Y.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with simplified neutrosophic sets. Appl. Soft Comput. 2014, 25, 336–346. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their applications in multicriteria decision making. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar] [CrossRef]
- Ye, J. Single valued neutrosophic cross-entropy for multicriteria decision making problems. Appl. Math. Model. 2014, 38, 1170–1175. [Google Scholar] [CrossRef]
- Guo, Y.; Sengur, A.; Ye, J. A novel image thresholding algorithm based on neutrosophic similarity score. Measurement 2014, 58, 175–186. [Google Scholar] [CrossRef]
- Ye, J. Multiple attribute decision-making method based on the possibility degree ranking method and ordered weighted aggregation operators of interval neutrosophic numbers. J. Intell. Fuzzy Syst. 2015, 28, 1307–1317. [Google Scholar] [CrossRef]
- Ye, J. Improved cosine similarity measures of simplified neutrosophic sets for medical diagnoses. Artif. Intell. Med. 2015, 63, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Sahin, R.; Kucuk, A. Subsethood measure for single valued neutrosophic sets. J. Intell. Fuzzy Syst. 2015, 29, 525–530. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Ji, P.; Wang, J.; Chen, X.H. An improved weighted correlation coefficient based on integrated weight for interval neutrosophic sets and its application in multi-criteria decision-making problems. Int. J. Comput. Intell. Syst. 2015, 8, 1027–1043. [Google Scholar] [CrossRef]
- Ye, J. Interval neutrosophic multiple attribute decision-making method with credibility information. Int. J. Fuzzy Syst. 2016, 18, 914–923. [Google Scholar] [CrossRef]
- Ye, J.; Fu, J. Multi-period medical diagnosis method using a single valued neutrosophic similarity measure based on tangent function. Comput. Methods Program Biomed. 2015, 123, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. An outranking approach for multi-criteria decision-making problems with interval-valued neutrosophic sets. Neural Comput. Appl. 2016, 27, 615–627. [Google Scholar] [CrossRef]
- Peng, J.J.; Wang, J.Q.; Wang, J.; Zhang, H.Y.; Chen, X.H. Simplified neutrosophic sets and their applications in multi-criteria group decision-making problems. Int. J. Syst. Sci. 2016, 47, 2342–2358. [Google Scholar] [CrossRef]
- Tian, Z.P.; Zhang, H.Y.; Wang, J.; Wang, J.Q.; Chen, X.H. Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets. Int. J. Syst. Sci. 2016, 47, 3598–3608. [Google Scholar] [CrossRef]
- Ye, J. Projection and bidirectional projection measures of single valued neutrosophic sets and their decision-making method for mechanical design schemes. J. Exp. Theor. Artif. Intell. 2016, 1–10. [Google Scholar] [CrossRef]
- Ye, J. Single-valued neutrosophic clustering algorithms based on similarity measures. J. Classif. 2017, 34, 148–162. [Google Scholar] [CrossRef]
- Ye, J. Single valued neutrosophic similarity measures based on cotangent function and their application in the fault diagnosis of steam turbine. Soft Comput. 2017, 21, 817–825. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, J.Q.; Chen, X.H. Interval neutrosophic sets and their application in multicriteria decision making problems. Sci. World J. 2014, 2014, 645953. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision making method based on single-valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. J. Intell. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
- Zhao, A.W.; Du, J.G.; Guan, H.J. Interval valued neutrosophic sets and multi-attribute decision-making based on generalized weighted aggregation operator. J. Intell. Fuzzy Syst. 2015, 29, 2697–2706. [Google Scholar] [CrossRef]
- Sun, H.X.; Yang, H.X.; Wu, J.Z.; Yao, O.Y. Interval neutrosophic numbers Choquet integral operator for multi-criteria decision making. J. Intell. Fuzzy Syst. 2015, 28, 2443–2455. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Wu, X.H.; Wang, J.Q.; Peng, J.J.; Chen, X.H. Cross-entropy and prioritized aggregation operator with simplified neutrosophic sets and their application in multi-criteria decision-making problems. J. Intell. Fuzzy Syst. 2016, 18, 1104–1116. [Google Scholar] [CrossRef]
- Ye, J. Exponential operations and aggregation operators of interval neutrosophic sets and their decision making methods. Springerplus 2016, 5, 1488. [Google Scholar] [CrossRef] [PubMed]
- Dombi, J. A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 1982, 8, 149–163. [Google Scholar] [CrossRef]
- Liu, P.D.; Liu, J.L.; Chen, S.M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2017, 1–26. [Google Scholar] [CrossRef]
- Maio, C.D.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A framework for context-aware heterogeneous group decision making in business processes. Knowl-Based Syst. 2016, 102, 39–50. [Google Scholar] [CrossRef]
- Maio, C.D.; Fenza, G.; Loia, V.; Orciuoli, F.; Herrera-Viedma, E. A context-aware fuzzy linguistic consensus model supporting innovation processes. In Proceedings of the 2016 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), Vancouver, BC, Canada, 24–29 July 2016; pp. 1685–1692. [Google Scholar]
ρ | E(s1), E(s2), E(s3), E(s4) | Ranking Order |
---|---|---|
1 | 0.7032, 0.7182, 0.6046, 0.8171 | S4 S2 S1 S3 |
2 | 0.7259, 0.7356, 0.6257, 0.8326 | S4 S2 S1 S3 |
3 | 0.7380, 0.7434, 0.6364, 0.8396 | S4 S2 S1 S3 |
4 | 0.7449, 0.7480, 0.6429, 0.8441 | S4 S2 S1 S3 |
5 | 0.7492, 0.7511, 0.6472, 0.8474 | S4 S2 S1 S3 |
6 | 0.7521, 0.7533, 0.6503, 0.8499 | S4 S2 S1 S3 |
7 | 0.7542, 0.7550, 0.6525, 0.8520 | S4 S2 S1 S3 |
8 | 0.7558, 0.7564, 0.6543, 0.8536 | S4 S2 S1 S3 |
9 | 0.7571, 0.7574, 0.6556, 0.8549 | S4 S2 S1 S3 |
10 | 0.7580, 0.7583, 0.6567, 0.8560 | S4 S2 S1 S3 |
ρ | E(s1), E(s2), E(s3), E(s4) | Ranking Order |
---|---|---|
1 | 0.6345, 0.5921, 0.5041, 0.6119 | S1 S4 S2 S3 |
2 | 0.6145, 0.5602, 0.4722, 0.5645 | S1 S4 S2 S3 |
3 | 0.6026, 0.5460, 0.4549, 0.5454 | S1 S2 S4 S3 |
4 | 0.5950, 0.5374, 0.4439, 0.5351 | S1 S2 S4 S3 |
5 | 0.5898, 0.5316, 0.4363, 0.5286 | S1 S2 S4 S3 |
6 | 0.5861, 0.5272, 0.4308, 0.5241 | S1 S2 S4 S3 |
7 | 0.5834, 0.5238, 0.4266, 0.5208 | S1 S2 S4 S3 |
8 | 0.5813, 0.5211, 0.4234, 0.5183 | S1 S2 S4 S3 |
9 | 0.5797, 0.5190, 0.4208, 0.5163 | S1 S2 S4 S3 |
10 | 0.5784, 0.5172, 0.4188, 0.5147 | S1 S2 S4 S3 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Ye, J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry 2017, 9, 82. https://doi.org/10.3390/sym9060082
Chen J, Ye J. Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry. 2017; 9(6):82. https://doi.org/10.3390/sym9060082
Chicago/Turabian StyleChen, Jiqian, and Jun Ye. 2017. "Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making" Symmetry 9, no. 6: 82. https://doi.org/10.3390/sym9060082
APA StyleChen, J., & Ye, J. (2017). Some Single-Valued Neutrosophic Dombi Weighted Aggregation Operators for Multiple Attribute Decision-Making. Symmetry, 9(6), 82. https://doi.org/10.3390/sym9060082