# Magnetic Transport in Spin Antiferromagnets for Spintronics Applications

## Abstract

**:**

## 1. Introduction

## 2. The JW Transformation and Duality Symmetry

## 3. The Magnetic Current in the Bond–Mean Field Theory

## 4. Current Density, Green and Spectral Functions

#### 4.1. Current Density Operator

#### 4.2. Green and Spectral Functions

## 5. The j-j Correlation Function and Magnetic Conductivity

#### 5.1. Kubo Formula

#### 5.2. The Real Part of the Magnetic Conductivity

## 6. The Magnetic Thermal Conductivity

## 7. Discussion and Predictions

## 8. Conclusions

## Acknowledgments

## Conflicts of Interest

## References

- Gregg, J.F. Spin Electronics; Ziese, M., Thornton, M.J., Eds.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Jedema, F.J.; Filip, A.T.; van Wees, B.J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature
**2001**, 410, 345. [Google Scholar] [CrossRef] [PubMed] - Sharma, P. How to create a spin current. Science
**2005**, 307, 531–533. [Google Scholar] [CrossRef] [PubMed] - An, Z.; Liu, F.Q.; Lin, Y.; Liu, C. The universal definition of spin current. Sci. Rep.
**2012**, 2, 388. [Google Scholar] [CrossRef] [PubMed] - Sun, Q.-F.; Xie, X.C. Definition of the spin current: The angular spin current and its physical consequences. Phys. Rev. B
**2005**, 72, 245305. [Google Scholar] [CrossRef] - Choi, G.-M.; Min, B.-C.; Lee, K.-J.; Cahill, D.G. Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun.
**2014**, 5, 4334. [Google Scholar] [CrossRef] [PubMed] - Bock, B.; Azzouz, M. Interchain-coupling effect on the one-dimensional spin-1/2 antiferromagnetic Heisenberg model. Phys. Rev. B
**1993**, 48, 6136. [Google Scholar] - Azzouz, M. Generalization of the Jordan-Wigner transformation in three dimensions and its application to the Heisenberg bilayer antiferromagnet. Phys. Rev. B
**2001**, 64, 054410. [Google Scholar] - Goddard, P.; Olive, D. Magnetic monopoles in gauge field theories. Rep. Prog. Phys.
**1978**, 41, 1357. [Google Scholar] [CrossRef] - Azzouz, M.; Asante, K.A. Spin locking and freezing phenomena in the antiferromagnetic Heisenberg model on the three-leg ladder. Phys. Rev. B
**2005**, 72, 094433. [Google Scholar] [CrossRef] - Azzouz, M. Field-induced quantum criticality in low-dimensional Heisenberg spin systems. Phys. Rev. B
**2006**, 74, 174422. [Google Scholar] [CrossRef] - Hirobe, D.; Sato, M.; Kawamata, T.; Shiomi, Y.; Uchida, K.I.; Iguchi, R.; Koike, Y.; Maekawa, S.; Saitoh, E. One-dimensional spinon spin currents. Nat. Phys.
**2017**, 13, 30. [Google Scholar] [CrossRef] - Jordan, P.; Wigner, E. On Pauli’s Equivalence-Prohibition (Uber das Paulische Aquivalenzverbot). Z. Phys.
**1928**, 47, 631. [Google Scholar] [CrossRef] - Bonner, J.C.; Fisher, M.E. Linear magnetic chains with anisotropic coupling. Phys. Rev.
**1964**, 135, A640. [Google Scholar] [CrossRef] - Parkinson, J.B.; Bonner, J.C. Spin chains in a field: Crossover from quantum to classical behavior. Phys. Rev. B
**1985**, 32, 4703. [Google Scholar] [CrossRef] - Aschroft, N.W.; Mermin, N.D. Solid State Physics; Saunders College Publishing: Philadelphia, PA, USA, 1976; p. 250. [Google Scholar]
- Zotos, X.; Naef, F.; Prelovsek, P. Transport and conservation laws. Phys. Rev. B
**1997**, 55, 11029. [Google Scholar] [CrossRef] - Hlubek, N.; Ribeiro, P.; Saint-Martin, R.; Revcolevschi, A.; Roth, G.; Behr, G.; Büchner, B.; Hess, C. Ballistic heat transport of quantum spin excitations as seen in SrCuO
_{2}. Phys. Rev. B**2010**, 81, 020405(R). [Google Scholar] [CrossRef] - Hlubek, N.; Zotos, X.; Singh, S.; Saint-Martin, R.; Revcolevschi, A.; Büchner, B.; Hess, C. Spinon heat transport and spin–phonon interaction in the spin-1/2 Heisenberg chain cuprates Sr
_{2}CuO_{3}and SrCuO_{2}. J. Stat. Mech. Theory Exp.**2012**, 2012, P03006. [Google Scholar] [CrossRef] - Hess, C. Heat conduction in low-dimensional quantum magnets. Eur. Phys. J. Spec. Top.
**2007**, 151, 73–83. [Google Scholar] [CrossRef] - Saitoh, E.; Ueda, M.; Miyajima, H.; Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-hall effect. Appl. Phys. Lett.
**2006**, 88, 182509. [Google Scholar] [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Azzouz, M.
Magnetic Transport in Spin Antiferromagnets for Spintronics Applications. *Symmetry* **2017**, *9*, 225.
https://doi.org/10.3390/sym9100225

**AMA Style**

Azzouz M.
Magnetic Transport in Spin Antiferromagnets for Spintronics Applications. *Symmetry*. 2017; 9(10):225.
https://doi.org/10.3390/sym9100225

**Chicago/Turabian Style**

Azzouz, Mohamed.
2017. "Magnetic Transport in Spin Antiferromagnets for Spintronics Applications" *Symmetry* 9, no. 10: 225.
https://doi.org/10.3390/sym9100225