# Some Invariants of Jahangir Graphs

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

_{n},

_{m}for all values of m and n. From the M-polynomial, we recover many degree-based topological indices such as first and second Zagreb indices, modified Zagreb index, Symmetric division index, etc. We also compute harmonic index, first and second multiple Zagreb indices and forgotten index of Jahangir graphs. Our results are extensions of many existing results.

## 1. Introduction

_{n},

_{m}is a graph on $nm+1$ vertices and $m(n+1)$ edges $\forall \text{}n\ge 2$ and $m\ge 3$. J

_{n},

_{m}consists of a cycle ${c}_{nm}$ with one additional vertex which is adjacent to m vertices of ${c}_{nm}$ at distance to each other. Figure 1 shows some particular cases of J

_{n},

_{m}.

_{n},

_{m}. We also compute many degree-based topological indices for this family of the graph. We analyze these indices against parametric values m and n graphically and draw some nice conclusions as well.

**Definition**

**1.**

**Definition**

**2.**

**Definition**

**3.**

**Definition**

**4.**

**Definition**

**5.**

**Definition**

**6.**

**Definition**

**7.**

## 2. Main Results

**Theorem**

**1.**

**Proof.**

**Proposition**

**2.**

- 1
- ${M}_{1}({J}_{n,m})={m}^{2}+4mn+5m,$
- 2
- ${M}_{2}({J}_{n,m})=3{m}^{2}+4mn+4m,$
- 3
- ${}^{m}{M}_{2}({J}_{n,m})=(1/4)mn-(1/6)m+1/3,$
- 4
- ${R}_{\alpha}\left({J}_{n,m}\right)={4}^{a}m(n-2)+2m{6}^{a}+{m}^{(a+1)}{3}^{a},$
- 5
- $R{R}_{\alpha}\left({J}_{n,m}\right)=m(n-2){4}^{(-a)}+2m{6}^{(-a)}+{m}^{(1-a)}{3}^{(-a)},$
- 6
- $SSD({J}_{n,m})=2mn+(1/3)m+3+(1/3){m}^{2},$
- 7
- $H\left({J}_{n,m}\right)=(1/4)mn-(1/10)m+m/(m+3),$
- 8
- $I({J}_{n,m})=mn+(2/5)m+3{m}^{2}/(m+3),$
- 9
- $A({J}_{n,m})=8mn-8m+27{m}^{4}/{(1+m)}^{3}.$

**Proof.**

**1. First Zagreb Index**

**2. Second Zagreb Index**

**3. Modified second Zagreb Index**

**4. Generalized Randic Index**

**5. Inverse Randic Index**

**6. Symmetric Division Index**

**7. Harmonic Index**

**8. Inverse Sum Index**

**9. Augmented Zagreb Index**

**Theorem**

**3.**

**Proof.**

**Proposition**

**4.**

**Proof.**

## 3. Conclusions and Discussion

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Rücker, G.; Rücker, C. On topological indices, boiling points, and cycloalkanes. J. Chem. Inf. Comput. Sci.
**1999**, 39, 788–802. [Google Scholar] [CrossRef] - Klavzar, S.; Gutman, I. A comparison of the Schultz molecular topological index with the Wiener index. J. Chem. Inf. Comput. Sci.
**1996**, 36, 1001–1003. [Google Scholar] [CrossRef] - Brückler, F.M.; Došlić, T.; Graovac, A.; Gutman, I. On a class of distance-based molecular structure descriptors. Chem. Phys. Lett.
**2011**, 503, 336–338. [Google Scholar] [CrossRef] - Deng, H.; Yang, J.; Xia, F. A general modeling of some vertex-degree based topological indices in benzenoid systems and phenylenes. Comput. Math. Appl.
**2011**, 61, 3017–3023. [Google Scholar] [CrossRef] - Zhang, H.; Zhang, F. The Clar covering polynomial of hexagonal systems I. Discret. Appl. Math.
**1996**, 69, 147–167. [Google Scholar] [CrossRef] - Gutman, I. Some properties of the Wiener polynomials. Graph Theory Notes N. Y.
**1993**, 125, 13–18. [Google Scholar] - Deutsch, E.; Klavzar, S. M-Polynomial, and degree-based topological indices. Iran. J. Math. Chem.
**2015**, 6, 93–102. [Google Scholar] - Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-polynomial and related topological indices of Nanostar dendrimers. Symmetry
**2016**, 8, 97. [Google Scholar] [CrossRef] - Munir, M.; Nazeer, W.; Rafique, S.; Kang, S.M. M-Polynomial and Degree-Based Topological Indices of Polyhex Nanotubes. Symmetry
**2016**, 8, 149. [Google Scholar] [CrossRef] - Munir, M.; Nazeer, W.; Rafique, S.; Nizami, A.R.; Kang, S.M. Some Computational Aspects of Triangular Boron Nanotubes. Symmetry
**2016**, 9, 6. [Google Scholar] [CrossRef] - Munir, M.; Nazeer, W.; Shahzadi, Z.; Kang, S.M. Some invariants of circulant graphs. Symmetry
**2016**, 8, 134. [Google Scholar] [CrossRef] - Lourdusamy, A.; Jayaseelan, S.S.; Mathivanan, T. On pebbling Jahangir graph. Gen. Math. Notes
**2011**, 5, 42–49. [Google Scholar] - Mojdeh, M.A.; Ghameshlou, A.N. Domination in Jahangir Graph J
_{2,m}. Int. J. Contemp. Math. Sci.**2007**, 2, 1193–1199. [Google Scholar] [CrossRef] - Ali, K.; Baskoro, E.T.; Tomescu, I. On the Ramsey number of Paths and Jahangir, graph J
_{3,m}. In Proceedings of the 3rd International Conference on 21st Century Mathematics, Lahore, Pakistan, 4–7 March 2007. - Farahani, M.R. Hosoya Polynomial and Wiener Index of Jahangir graphs J
_{2,m}. Pac. J. Appl. Math.**2015**, 7, 221–224. [Google Scholar] - Farahani, M.R. The Wiener Index and Hosoya polynomial of a class of Jahangir graphs J
_{3,m}. Fundam. J. Math. Math. Sci.**2015**, 3, 91–96. [Google Scholar] - Wang, S.; Farahani, M.R.; Kanna, M.R.; Jamil, M.K.; Kumar, R.P. The Wiener Index and the Hosoya Polynomial of the Jahangir Graphs. Appl. Comput. Math.
**2016**, 5, 138–141. [Google Scholar] [CrossRef] - Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc.
**1947**, 69, 17–20. [Google Scholar] [CrossRef] [PubMed] - Dobrynin, A.A.; Entringer, R.; Gutman, I. Wiener index of trees: Theory and applications. Acta Appl. Math.
**2001**, 66, 211–249. [Google Scholar] [CrossRef] - Gutman, I.; Polansky, O.E. Mathematical Concepts in Organic Chemistry; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Randic, M. Characterization of molecular branching. J. Am. Chem. Soc.
**1975**, 97, 6609–6615. [Google Scholar] [CrossRef] - Bollobás, B.; Erdős, P. Graphs of extremal weights. Ars Comb.
**1998**, 50, 225–233. [Google Scholar] [CrossRef] - Amic, D.; Bešlo, D.; Lucic, B.; Nikolic, S.; Trinajstic, N. The vertex-connectivity index revisited. J. Chem. Inf. Comput. Sci.
**1998**, 38, 819–822. [Google Scholar] [CrossRef] - Hu, Y.; Li, X.; Shi, Y.; Xu, T.; Gutman, I. On molecular graphs with smallest and greatest zeroth-order general Randic index. MATCH Commun. Math. Comput. Chem.
**2005**, 54, 425–434. [Google Scholar] - Caporossi, G.; Gutman, I.; Hansen, P.; Pavlović, L. Graphs with maximum connectivity index. Comput. Biol. Chem.
**2003**, 27, 85–90. [Google Scholar] [CrossRef] - Li, X.; Gutman, I. Mathematical Aspects of Randic-Type Molecular Descriptors; University of Kragujevac and Faculty of Science Kragujevac: Kragujevac, Serbia, 2006. [Google Scholar]
- Kier, L.B.; Hall, L.H. Molecular Connectivity in Chemistry and Drug Research; Academic Press: New York, NY, USA, 1976. [Google Scholar]
- Kier, L.B.; Hall, L.H. Molecular Connectivity in Structure-Activity Analysis; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Randić, M. On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem.
**2008**, 59, 5–124. [Google Scholar] - Randić, M. The connectivity index 25 years after. J. Mol. Graph. Model.
**2001**, 20, 19–35. [Google Scholar] [CrossRef] - Nikolić, S.; Kovačević, G.; Miličević, A.; Trinajstić, N. The Zagreb indices 30 years after. Croat. Chem. Acta
**2003**, 76, 113–124. [Google Scholar] - Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem.
**2004**, 50, 83–92. [Google Scholar] - Das, K.C.; Gutman, I. Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem.
**2004**, 52, 103–112. [Google Scholar] - Trinajstic, N.; Nikolic, S.; Milicevic, A.; Gutman, I. On Zagreb indices. Kem. Ind.
**2010**, 59, 577–589. [Google Scholar] - Huang, Y.; Liu, B.; Gan, L. Augmented Zagreb Index of Connected Graphs. MATCH Commun. Math. Comput. Chem.
**2012**, 67, 483–494. [Google Scholar] - Furtula, B.; Graovac, A.; Vukičević, D. Augmented Zagreb index. J. Math. Chem.
**2010**, 48, 370–380. [Google Scholar] [CrossRef] - Shirdel, G.H.; Pour, H.R.; Sayadi, A.M. The hyper-Zagreb index of graph operations. Iran. J. Math. Chem.
**2013**, 4, 213–220. [Google Scholar] - Ghorbani, M.; Azimi, N. Note on multiple Zagreb indices. Iran. J. Math. Chem.
**2012**, 3, 137–143. [Google Scholar]

Topological Index | Derivation from $\mathit{M}(\mathit{G};\mathit{x},\mathit{y})$ |
---|---|

First Zagreb | $\left({D}_{x}+{D}_{y}\right){(M(G;x,y))}_{x=y=1}$ |

Second Zagreb | $\left({D}_{x}{D}_{y}\right){(M(G;x,y))}_{x=y=1}$ |

Second Modified Zagreb | $\left({S}_{x}{S}_{y}\right){(M(G;x,y))}_{x=y=1}$ |

Inverse Randic | $\left({D}_{x}^{\alpha}{D}_{y}^{\alpha}\right){(M(G;x,y))}_{x=y=1}$ |

General Randic | $\left({S}_{x}^{\alpha}{S}_{y}^{\alpha}\right){(M(G;x,y))}_{x=y=1}$ |

Symmetric Division Index | $\left({D}_{x}{S}_{y}+{S}_{x}{D}_{y}\right){(M(G;x,y))}_{x=y=1}$ |

Harmonic Index | $2{S}_{x}J{(M(G;x,y))}_{x=1}$ |

Inverse sum Index | ${S}_{x}J{D}_{x}{D}_{y}{(M(G;x,y))}_{x=1}$ |

Augmented Zagreb Index | ${{S}_{x}}^{3}{Q}_{-2}J{{D}_{x}}^{3}{{D}_{y}}^{3}{(M(G;x,y))}_{x=1}$ |

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Munir, M.; Nazeer, W.; Kang, S.M.; Qureshi, M.I.; Nizami, A.R.; Kwun, Y.C.
Some Invariants of Jahangir Graphs. *Symmetry* **2017**, *9*, 17.
https://doi.org/10.3390/sym9010017

**AMA Style**

Munir M, Nazeer W, Kang SM, Qureshi MI, Nizami AR, Kwun YC.
Some Invariants of Jahangir Graphs. *Symmetry*. 2017; 9(1):17.
https://doi.org/10.3390/sym9010017

**Chicago/Turabian Style**

Munir, Mobeen, Waqas Nazeer, Shin Min Kang, Muhammad Imran Qureshi, Abdul Rauf Nizami, and Youl Chel Kwun.
2017. "Some Invariants of Jahangir Graphs" *Symmetry* 9, no. 1: 17.
https://doi.org/10.3390/sym9010017