# Old Game, New Rules: Rethinking the Form of Physics

## Abstract

**:**

## 1. Introduction

## 2. The Rules Of The Game

#### 2.1. Discussion of the Rules

#### 2.2. What about Space-Time?

## 3. Theory of Small Oscillations

**symplex**(plural symplices), if a matrix holds Equation (15) and of a

**cosymplex**if it holds Equation (16).

#### 3.1. Symplectic Motion and Second Moments

## 4. Geometry from Hamiltonian Motion

#### Matrix Exponentials

## 5. The Significance of (De-)Coupling

#### 5.1. The Pauli Algebra

#### 5.2. The Dirac Algebra

## 6. Electromechanical Equivalence (EMEQ)

#### 6.1. Moments and The Fourier Transform

#### 6.2. The Geometry of (De-)Coupling

#### 6.3. The Lorentz Force

#### 6.4. The Maxwell Equations

## 7. The Phase Space

## 8. Summary and Discussion

## Conflicts of Interest

## Appendix A. Microcanonical Ensemble

#### Appendix A.1. Entropy and Heat Capacity

## References

- Hestenes, D. Modeling games in the Newtonian World. Am. J. of Phys.
**1992**, 60, 732–748. [Google Scholar] [CrossRef] - Dirac, P.A.M. A remarkable representation of the 3 + 2 de Sitter group. J. Math. Phys.
**1963**, 4, 901–909. [Google Scholar] [CrossRef] - Kim, Y.S.; Noz, M.E. Symplectic formulation of relativistic quantum mechanics. J. Math. Phys.
**1981**, 22, 2289–2293. [Google Scholar] [CrossRef] - Kim, Y.S.; Noz, M.E. Dirac’s light—Cone coordinate system. Am. J. Phys.
**1982**, 50, 721–724. [Google Scholar] [CrossRef] - Kim, Y.S.; Noz, M.E. Coupled oscillators, entangled oscillators, and Lorentz-covariant harmonic oscillators. J. Opt. B Quantum Semiclass. Opt.
**2005**, 7, S458–S467. [Google Scholar] [CrossRef] - Briggs, J.; Eisfeld, A. Equivalence of quantum and classical coherence in electronic energy transfer. Phys. Rev. E
**2011**, 83, 051911. [Google Scholar] [CrossRef] [PubMed] - Briggs, J.; Eisfeld, A. Coherent quantum states from classical oscillator amplitudes. Phys. Rev. A
**2012**, 85, 052111. [Google Scholar] [CrossRef] - Briggs, J.; Eisfeld, A. Quantum dynamics simulations with classical oscillators. Phys. Rev. A
**2013**, 88, 062104. [Google Scholar] [CrossRef] - Jaynes, E.T. The Electron; Hestenes, D., Weingartshofer, A., Eds.; Kluwer Academic Publishers: Dordrecht, Holland, 1991. [Google Scholar]
- Schilpp, P.A. Albert Einstein: Autobiographical Notes; Open Court Publishing Company: Chicago, IL, USA, 1979. [Google Scholar]
- Lieb, E.H. The stability of matter, Rev. Mod. Phys.
**1976**, 48, 553–569. [Google Scholar] [CrossRef] - Meyer, K.R.; Hall, G.R.; Offin, D. Introduction to Hamiltonian Dynamical Systems and the N-Body Problem, 2nd ed.; Springer: New York, NY, USA, 2000. [Google Scholar]
- Lax, P.D. Integrals of Nonlinear Equations of Evolution and Solitary Waves. Comm. Pure Appl. Math.
**1968**, 21, 467–490. [Google Scholar] [CrossRef] - Dirac, P.A.M. The Quantum Theory of the Electron. Proc. R. Soc. A
**1928**, 117, 610–624. [Google Scholar] [CrossRef] - Borstnik, N.M.; Nielson, H.B. Why odd-space and odd-time dimensions in even-dimensional spaces? Phys. Lett. B
**2000**, 486, 314–321. [Google Scholar] [CrossRef] - Baumgarten, C. Minkowski Spacetime and QED from Ontology of Time. Kastner, R.E., Jeknic-Dugic, J., Jaroszkiewicz, G., Eds.; 2014/2015; arXiv:1409.5338v5; to appear in Quantum Structural Studies, forthcoming from World Scientific. [Google Scholar]
- Lounesto, P. Clifford Algebras and Spinors, 2nd ed.; Cambridge University Press: New York, NY, USA, 2001. [Google Scholar]
- Baumgarten, C. A new look at linear (non-?) symplectic ion beam optics in magnets. Nucl. Instr. Meth. A
**2014**, 735, 546–551. [Google Scholar] [CrossRef] - Dyson, F.J. The Threefold Way. Algebraic Structure of Symmetry Groups and Ensembles in Quantum Mechanics. J. Math. Phys.
**1962**, 3, 1199–1215. [Google Scholar] [CrossRef] - Ralston, J.P. Berrys phase and the symplectic character of quantum time evolution. Phys. Rev. A
**1989**, 40, 4872–4884. [Google Scholar] [CrossRef] - Hestenes, D. Observables, Operators, and Complex Numbers in the Dirac Theory. J. Math. Phys.
**1975**, 16, 556–572. [Google Scholar] [CrossRef] - Baylis, W.E.; Huschlit, J.; Wei, J. Why i? Am. J. Phys.
**1992**, 60, 788–796. [Google Scholar] [CrossRef] - Horn, M.E. Living in a world without imaginaries. J. Phys.: Conf. Ser.
**2012**, 380, 012006. [Google Scholar] [CrossRef] - Gibbons, G.W. The Emergent Nature of Time and the Complex Numbers in Quantum Cosmology. In The Arrows of Time: A debate in Cosmology; Mersini-Houghton, L., Vass, R., Eds.; Springer Berlin Heidelberg: Berlin, Germany, 2012; pp. 109–148. [Google Scholar]
- Schiff, J.; Poirier, B. Communication: Quantum mechanics without wavefunctions. J. Chem. Phys.
**2012**, 136, 031102. [Google Scholar] [CrossRef] [PubMed] - Strocchi, F. Complex coordinates and quantum mechanics. Rev. Mod. Phys.
**1966**, 38, 36–40. [Google Scholar] [CrossRef] - Stückelberg, E.C.G. Quantum theory in real Hilbert space. Helv. Phys. Acta
**1960**, 33, 727–752. [Google Scholar] - Hestenes, D. Space-Time-Algebra; Gordon and Breach: New York, NY, USA, 1966. [Google Scholar]
- Hestenes, D. Spacetime Physics with Geometric Algebra. Am. J. Phys.
**2003**, 71, 691–714. [Google Scholar] [CrossRef] - Gull, S.; Lasenby, A.; Doran, C. Imaginary numbers are not real—The geometric algebra of spacetime. Found. Phys.
**1993**, 23, 1175–1201. [Google Scholar] [CrossRef] - Pauli, W. Elementary Particles and Their Interactions: Concepts and Phenomena. Ann. de l’Inst. Henry Poincare
**1936**, 6, 109–136. [Google Scholar] - Baumgarten, C. Use of real Dirac matrices in two-dimensional coupled linear optics. Phys. Rev. ST Accel. Beams.
**2011**, 14, 114002. [Google Scholar] [CrossRef] - Baumgarten, C. Geometrical method of decoupling. Phys. Rev. ST Accel. Beams
**2012**, 15, 124001. [Google Scholar] [CrossRef] - Schmüser, P. Feynman-Graphen und Eichtheorien für Experimentalphysiker (Lecture Notes in Physics No. 295); Springer-Verlag: Heidelburg, Germany, 1988. (in German) [Google Scholar]
- Ralston, J.P. Quantum Theory without Planck’s Constant. 2012; arXiv:1203.5557. [Google Scholar]
- Schrödinger, E. Space-Time Structure; Cambridge University Press, 1950; ISBN ISBN 0-521-31520-4. [Google Scholar]
- Blumenhagen, R.; Lüst, D.; Theissen, S. Basic Concepts of String Theory; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2013. [Google Scholar]
- Dirac, P.A.M. Forms of Relativistic Dynamics. Rev. Mod. Phys.
**1949**, 21, 392–399. [Google Scholar] [CrossRef] - ’t Hooft, G. Dimensional Reduction in Quantum Gravity. 2009; arxiv:gr-qc/9310026. [Google Scholar]
- Susskind, L. The world as a hologram. J. Math. Phys.
**1995**, 36, 6377–6396. [Google Scholar] [CrossRef] - Becker, R. Theory of Heat, 2nd ed.; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 1967. [Google Scholar]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Baumgarten, C.
Old Game, New Rules: Rethinking the Form of Physics. *Symmetry* **2016**, *8*, 30.
https://doi.org/10.3390/sym8050030

**AMA Style**

Baumgarten C.
Old Game, New Rules: Rethinking the Form of Physics. *Symmetry*. 2016; 8(5):30.
https://doi.org/10.3390/sym8050030

**Chicago/Turabian Style**

Baumgarten, Christian.
2016. "Old Game, New Rules: Rethinking the Form of Physics" *Symmetry* 8, no. 5: 30.
https://doi.org/10.3390/sym8050030