# A Note on Lower Bounds for Colourful Simplicial Depth

^{1}

^{2}

^{*}

## Abstract

**:**

**MSC**52A35; 05D05; 52B05

#### Octahedral Systems

**Property 1.**

**Property 2.**

**Lemma 1.**

#### Enumeration Details

0 | 1 | 2 | 3 | 4 | |

$*1111$ | 1 | 1 | 1 | 0 | 0 |

$*2222$ | 1 | 1 | 1 | 0 | 0 |

$*3333$ | 1 | 1 | 1 | 0 | 0 |

$*4444$ | 1 | 1 | 1 | 0 | 0 |

#### Final remarks

## Acknowledgments

## References

- Bárány, I. A generalization of Carathéodory’s theorem. Discret. Math.
**1982**, 40, 141–152. [Google Scholar] [CrossRef] - Deza, A.; Huang, S.; Stephen, T.; Terlaky, T. Colourful simplicial depth. Discret. Comput. Geom.
**2006**, 35, 597–604. [Google Scholar] [CrossRef] - Bárány, I.; Matoušek, J. Quadratically many colorful simplices. SIAM J. Discret. Math.
**2007**, 21, 191–198. [Google Scholar] - Stephen, T.; Thomas, H. A quadratic lower bound for colourful simplicial depth. J. Comb. Opt.
**2008**, 16, 324–327. [Google Scholar] [CrossRef] - Deza, A.; Stephen, T.; Xie, F. More colourful simplices. Discret. Comput. Geom.
**2011**, 45, 272–278. [Google Scholar] [CrossRef] - Liu, R.Y. On a notion of data depth based on random simplices. Ann. Statist.
**1990**, 18, 405–414. [Google Scholar] [CrossRef] - Gromov, M. Singularities, expanders and topology of maps. Part 2: From combinatorics to topology via algebraic isoperimetry. Geom. Funct. Anal.
**2010**, 20, 416–526. [Google Scholar] [CrossRef] - Matoušek, J.; Wagner, U. On Gromov’s method of selecting heavily covered points. 2012. Available online: http://arxiv.org/abs/1102.3515 (accessed on 31 December 2012).
- Karasev, R. A simpler proof of the Boros-Füredi-Bárány-Pach-Gromov theorem. Discret. Comput. Geom.
**2012**, 47, 492–495. [Google Scholar] [CrossRef] - Král′, D.; Mach, L.; Sereni, J.S. A new lower bound based on Gromov’s method of selecting heavily covered points. Discret. Comput. Geom.
**2012**, 48, 487–498. [Google Scholar] - Bárány, I.; Onn, S. Colourful linear programming and its relatives. Math. Oper. Res.
**1997**, 22, 550–567. [Google Scholar] [CrossRef] - Deza, A.; Huang, S.; Stephen, T.; Terlaky, T. The colourful feasibility problem. Discret. Appl. Math.
**2008**, 156, 2166–2177. [Google Scholar] [CrossRef] - Custard, G.; Deza, A.; Stephen, T.; Xie, F. Small octahedral systems. In Proceedings of the 23rd Annual Canadian Conference on Computational Geometry, Toronto, Ontario, Canada, 10–12 August 2011; pp. 267–272.
- Bárány, I. Hungarian Academy of Sciences, Budapest, Hungary. Personal communication, 2010. [Google Scholar]
- Deza, A.; Stephen, T.; Xie, F. Computational lower bounds for colourful simplicial depth. Available online: http://arxiv.org/abs/1210.7621 (accessed on 31 December 2012).
- Xie, F. Python code for octrahedral system computation. Available online: http://optlab.mcmaster.ca/om/csd/ (accessed on 31 December 2012).
- Deza, A.; Meunier, F.; Sarrabezolles, P. A combinatorial approach to colourful simplicial depth. Available online: http://arxiv.org/abs//1212.4720 (accessed on 31 December 2012).
- Schulz, A.; Tóth, C.D. The union of colorful simplices spanned by a colored point set. Comput. Geom.
**2013**, in press. [Google Scholar] - Aloupis, G. Geometric measures of data depth. In Data Depth: Robust Multivariate Analysis, Computational Geometry and Applications; American Mathematical Society: Providence, RI, USA, 2006; Volume 72, pp. 147–158. [Google Scholar]

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

## Share and Cite

**MDPI and ACS Style**

Deza, A.; Stephen, T.; Xie, F.
A Note on Lower Bounds for Colourful Simplicial Depth. *Symmetry* **2013**, *5*, 47-53.
https://doi.org/10.3390/sym5010047

**AMA Style**

Deza A, Stephen T, Xie F.
A Note on Lower Bounds for Colourful Simplicial Depth. *Symmetry*. 2013; 5(1):47-53.
https://doi.org/10.3390/sym5010047

**Chicago/Turabian Style**

Deza, Antoine, Tamon Stephen, and Feng Xie.
2013. "A Note on Lower Bounds for Colourful Simplicial Depth" *Symmetry* 5, no. 1: 47-53.
https://doi.org/10.3390/sym5010047