# Time-Symmetric Boundary Conditions and Quantum Foundations

## Abstract

**:**

## 1. Introduction

## 2. Motivating FBCs

## 3. The Case for Classical Fields

## 4. First-Order Consequences: Quantization and Contextuality

## 5. Lessons for Quantum Foundations

## Acknowledgements

## References

- Lanczos, C. The Variational Principles of Mechanics, 4th ed.; Dover: New York, NY, USA, 1970. [Google Scholar]
- Schulman, L.S. Time’s Arrows and Quantum Measurement; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Eddington, A.S. The end of the world: From the standpoint of mathematical physics. Nature
**1931**, 127, 447–453. [Google Scholar] [CrossRef] - Heisenberg, W. ber den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys.
**1927**, 43, 172–198. [Google Scholar] [CrossRef] - Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading, PA, USA, 1980. [Google Scholar]
- Wharton, K.B. A novel interpretation of the Klein-Gordon Equation. Found. Phys.
**2010**, 40, 313–332. Available online: http://www.springerlink.com/content/l14jr4x24pk82521/ (accessed 8 March 2010). [CrossRef] - Spekkens, R.W. Evidence for the epistemic view of quantum states: A toy theory. Phys. Rev. A
**2007**, 75, 032110. [Google Scholar] [CrossRef] - Bell, J.S. On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys.
**1966**, 38, 447. [Google Scholar] [CrossRef] - Costa de Beauregard, O. Time symmetry and interpretation of quantum mechanics. Found. Phys.
**1976**, 6, 539–559. [Google Scholar] [CrossRef] - Reitdijk, C.W. Proof of a retroactive influence. Found. Phys.
**1978**, 8, 615–628. [Google Scholar] [CrossRef] - Cramer, J.G. Generalized absorber theory and the Einstein-Podolsky-Rosen paradox. Phys. Rev. D
**1980**, 22, 362–376. [Google Scholar] [CrossRef] - Sutherland, R.I. Bell’s theorem and Backwards-In-Time causality. Int. J. Theo. Phys.
**1983**, 22, 377–384. [Google Scholar] [CrossRef] - Price, H. Time’s Arrow and Archimedes’ Point; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Miller, D.J. Realism and time symmetry in quantum mechanics. Phys. Lett.
**1996**, A222, 31–36. [Google Scholar] [CrossRef] - Wharton, K.B. Time-symmetric quantum mechanics. Found. Phys.
**2007**, 37, 159. [Google Scholar] [CrossRef] - Miller, D.J. Quantum mechanics as a consistency condition on initial and final boundary conditions. Available online: http://arxiv.org/pdf/quant-ph/0607169 (accessed 30 December 2009).
- Aharonov, Y.; Vaidman, L. Complete description of a quantum system at a given time. J. Phys. A
**1991**, 24, 2315. [Google Scholar] [CrossRef] - Oeckl, R. Probabilites in the general boundary formulation. J. Phys. Conf. Ser.
**2007**, 67, 12049. [Google Scholar] [CrossRef] - Sutherland, R. Causally symmetric bohm model. Available online: http://arxiv.org/pdf/quant-ph/0601095 (accessed 30 December 2009).
- Arageorgis, A.; Earman, J.; Ruetsche, L. Fulling non-uniqueness and the unruh effect: A primer on some aspects of quantum field theory. Phil. Sci.
**2003**, 70, 164–202. [Google Scholar] [CrossRef] - DeWitt, B.S. Quantum theory of gravity I: The canonical theory. Phys. Rev.
**1967**, 160, 1113. [Google Scholar] [CrossRef] - Wharton, K.B. Extending Hamilton’s principle to quantize classical fields. Available online: http://arxiv.org/pdf/0906.5409 (accessed 30 December 2009).
- Aharonov, Y.; Bergmann, P.G.; Lebowitz, J.L. Time symmetry in the quantum process of measurement. Phys. Rev.
**1964**, 134, B1410–B1416. [Google Scholar] [CrossRef] - Montina, A. Exponential complexity and ontological theories of quantum mechanics. Phys. Rev. A
**2008**, 77, 22104. [Google Scholar] [CrossRef] - Evans, P.; Price, H.; Wharton, K.B. New slant on the EPR-Bell experiment. Available online: http://arxiv.org/pdf/1001.5057v2 (accessed 1 February 2010).
- Wharton, K. Classical fields as the natural ontic structure for quantum theory. Presented at Perimeter Institute, quantum foundations seminar, Waterloo, OT, USA, June 2009. [Google Scholar]

© 2010 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wharton, K.
Time-Symmetric Boundary Conditions and Quantum Foundations. *Symmetry* **2010**, *2*, 272-283.
https://doi.org/10.3390/sym2010272

**AMA Style**

Wharton K.
Time-Symmetric Boundary Conditions and Quantum Foundations. *Symmetry*. 2010; 2(1):272-283.
https://doi.org/10.3390/sym2010272

**Chicago/Turabian Style**

Wharton, Ken.
2010. "Time-Symmetric Boundary Conditions and Quantum Foundations" *Symmetry* 2, no. 1: 272-283.
https://doi.org/10.3390/sym2010272