Principal Component Analysis of Gait Continuous Relative Phase (CRP): Uncovering Lower Limb Coordination Biomarkers for Functional Disability in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Ethical Approval
2.2. Participants
2.3. Clinical and Functional Characterization
2.4. Gait Data Acquisition
2.5. Data Processing and Coordination Metrics
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| BI | Barthel Index |
| BMI | Body mass index |
| CRP | Continuous relative phase |
| CV | Coefficient-of-variation |
| IPAQ | International Physical Activity Questionnaire |
| KMO | Kaiser–Meyer–Olkin |
| Lawton IADL | Lawton–Brody Instrumental Activities of Daily Living Scale |
| MMSE | Mini-Mental State Examination |
| OA | Older adults |
| PC | Principal components |
| PCA | Principal component analysis |
| PCMs | Principal component models |
| SRH | Self-reported health |
References
- Eurostat. Difficulties in Personal Care Activities or Household Activities by Sex, Age and Educational Attainment Level. 2021. Available online: https://ec.europa.eu/eurostat/databrowser/product/page/HLTH_EHIS_TAE (accessed on 30 July 2025).
- Hafer, J.F.; Boyer, K.A. Age related differences in segment coordination and its variability during gait. Gait Posture 2018, 62, 92–98. [Google Scholar] [CrossRef]
- Adam, C.E.; Fitzpatrick, A.L.; Leary, C.S.; Hajat, A.; Ilango, S.D.; Park, C.; Phelan, E.A.; Semmens, E.O. Change in gait speed and fall risk among community-dwelling older adults with and without mild cognitive impairment: A retrospective cohort analysis. BMC Geriatr. 2023, 23, 328. [Google Scholar] [CrossRef]
- Sui, S.X.; Holloway-Kew, K.L.; Hyde, N.K.; Williams, L.J.; Leach, S.; Pasco, J.A. Muscle strength and gait speed rather than lean mass are better indicators for poor cognitive function in older men. Sci. Rep. 2020, 10, 10367. [Google Scholar] [CrossRef]
- Kim, U.; Lim, J.; Park, Y.; Bae, Y. Predicting fall risk through step width variability at increased gait speed in community dwelling older adults. Sci. Rep. 2025, 15, 16915. [Google Scholar] [CrossRef] [PubMed]
- Herssens, N.; Verbecque, E.; Hallemans, A.; Vereeck, L.; Van Rompaey, V.; Saeys, W. Do spatiotemporal parameters and gait variability differ across the lifespan of healthy adults? A systematic review. Gait Posture 2018, 64, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Hyeon, G.; Kim, C.; Shin, S. The reciprocal relationship between gait and handgrip strength across different age groups. Front. Public Health 2025, 13, 1557834. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.L.; Chou, L.S. Effect of walking speed on inter-joint coordination differs between young and elderly adults. J. Biomech. 2012, 45, 275–280. [Google Scholar] [CrossRef]
- Dewolf, A.H.; Meurisse, G.M.; Schepens, B.; Willems, P.A. Effect of walking speed on the intersegmental coordination of lower-limb segments in elderly adults. Gait Posture 2019, 70, 156–161. [Google Scholar] [CrossRef]
- Ippersiel, P.; Robbins, S.M.; Dixon, P.C. Lower-limb coordination and variability during gait: The effects of age and walking surface. Gait Posture 2021, 85, 251–257. [Google Scholar] [CrossRef]
- Alijanpour, E.; Russell, D.M. Age-related changes in gait coordination are focused on the step-to-step transition. J. Biomech. 2025, 189, 112830. [Google Scholar] [CrossRef]
- James, E.G.; Leveille, S.G.; You, T.; Hausdorff, J.M.; Travison, T.; Manor, B.; McLean, R.; Bean, J.F. Gait coordination impairment is associated with mobility in older adults. Exp. Gerontol. 2016, 80, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Guadagnin, E.C.; Barbieri, F.A.; Simieli, L.; Carpes, F.P. Is muscular and functional performance related to gait symmetry in older adults? A systematic review. Arch. Gerontol. Geriatr. 2019, 84, 103899. [Google Scholar] [CrossRef] [PubMed]
- Lukšys, D.; Jatužis, D.; Jonaitis, G.; Griškevičius, J. Application of continuous relative phase analysis for differentiation of gait in neurodegenerative disease. Biomed. Signal Process. Control. 2021, 67, 102558. [Google Scholar] [CrossRef]
- Lamb, P.F.; Stockl, M. On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clin. Biomech. 2014, 29, 484–493. [Google Scholar] [CrossRef]
- Haddad, J.M.; van Emmerik, R.E.; Wheat, J.S.; Hamill, J.; Snapp-Childs, W. Relative phase coordination analysis in the assessment of dynamic gait symmetry. J. Appl. Biomech. 2010, 26, 109–113. [Google Scholar] [CrossRef]
- van Emmerik, R.E.A.; Ducharme, S.W.; Amado, A.C.; Hamill, J. Comparing dynamical systems concepts and techniques for biomechanical analysis. J. Sport Health Sci. 2016, 5, 3–13. [Google Scholar] [CrossRef]
- Lord, S.; Galna, B.; Verghese, J.; Coleman, S.; Burn, D.; Rochester, L. Independent domains of gait in older adults and associated motor and nonmotor attributes: Validation of a factor analysis approach. J. Gerontol. Ser. A 2013, 68, 820–827. [Google Scholar] [CrossRef]
- Phinyomark, A.; Petri, G.; Ibáñez-Marcelo, E.; Osis, S.; Ferber, R. Analysis of Big Data in Gait Biomechanics: Current Trends and Future Directions. J. Med. Biol. Eng. 2018, 38, 244–260. [Google Scholar] [CrossRef]
- Moreira, J.; Silva, B.; Faria, H.; Santos, R.; Sousa, A.S.P. Systematic Review on the Applicability of Principal Component Analysis for the Study of Movement in the Older Adult Population. Sensors 2023, 23, 205. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.; Egger, M.; Pocock, S.; Gøtzsche, P.; Vandenbroucke, J. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [PubMed]
- Mahoney, F.; Barthel, D.W. Functional Evaluation: The Barthel Index. Md. State Med. J. 1965, 14, 61–65. [Google Scholar] [PubMed]
- Araújo, F.; Ribeiro, J.; Oliveira, A.; Pinto, C. Validação do índice de Barthel numa amostra de idosos não institucionalizados. Rev. Port. Saúde Pública 2007, 25, 59–66. [Google Scholar]
- Lawton, M.P.; Brody, E.M. Assessment of older people: Self-maintaining and instrumental activities of daily living. Gerontologist 1969, 9, 179–186. [Google Scholar] [CrossRef]
- Araújo, F.; Ribeiro, J.P.; Oliveira, A.; Pinto, C.; Martins, T. Validação da escala de Lawton e Brody numa amostra de idosos não institucionalizados. In Proceedings of the Actas Do 7º Congresso Nacional de Psicologia Da Saúde, Lisbon, Portugal, 31 January–2 February 2008; pp. 217–220. [Google Scholar]
- Crimmins, E.M. Trends in the health of the elderly. Annu. Rev. Public Health 2004, 25, 79–98. [Google Scholar] [CrossRef]
- Jansen, C.W.S.; Niebuhr, B.R.; Coussirat, D.J.; Hawthorne, D.; Moreno, L.; Phillip, M. Hand Force of Men and Women Over 65 Years of Age as Measured by Maximum Pinch and Grip Force. J. Aging Phys. Act. 2008, 16, 24–41. [Google Scholar] [CrossRef]
- Moreira, J.S.; Melo, A.; Santos, R.; Sousa, A.S.P. Indicators and Instruments to Assess Components of Disability in Community-Dwelling Older Adults: A Systematic Review. Sensors 2022, 22, 8270. [Google Scholar] [CrossRef]
- Leardini, A.; Biagi, F.; Merlo, A.; Belvedere, C.; Benedetti, M. Multi-segment trunk kinematics during locomotion and elementary exercises. Clin. Biomech. 2011, 26, 562–571. [Google Scholar] [CrossRef]
- Moreira, J.; Cunha, B.; Félix, J.; Santos, R.; Sousa, A.S.P. Kinematic and Kinetic Gait Principal Component Domains in Older Adults With and Without Functional Disability: A Cross-Sectional Study. J. Funct. Morphol. Kinesiol. 2025, 10, 140. [Google Scholar] [CrossRef]
- van Sint Jan, S. Color Atlas of Skeletal Landmark Definitions—Guidelines for Reproducible Manual and Virtual Palpations, 1st ed.; Churchill Livingstone: London, UK, 2007. [Google Scholar]
- Qualisys, A. Qualisys Track Maneger—User Manual; Qualisys AB: Gothenburg, Sweden, 2011. [Google Scholar]
- van Kooten, D.; Hettinga, F.; Duffy, K.; Jackson, J.; Taylor, M.J.D. Are there associations with age and sex in walking stability in healthy older adults? Gait Posture 2018, 60, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Fuchioka, S.; Iwata, A.; Higuchi, Y.; Miyake, M.; Kanda, S.; Nishiyama, T. The Forward Velocity of the Center of Pressure in the Midfoot is a Major Predictor of Gait Speed in Older Adults. Int. J. Gerontol. 2015, 9, 119–122. [Google Scholar] [CrossRef]
- Svoboda, Z.; Bizovska, L.; Janura, M.; Kubonova, E.; Janurova, K.; Vuillerme, N. Variability of spatial temporal gait parameters and center of pressure displacements during gait in elderly fallers and nonfallers: A 6-month prospective study. PLoS ONE 2017, 12, e0171997. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.; Moreira, J.; Sousa, A.S.P. Association Between Gait Lower Limb Intra and Interlimb Coordination and Fear of Falling and Falling History in Older Adults. Symmetry 2025, 17, 818. [Google Scholar] [CrossRef]
- Hair, J.; Tatham, R.; Anderson, R.; Black, W. Multivariate Data Analysis, 5th ed.; Prentice-Hall: London, UK, 1998. [Google Scholar]
- Chiu, S.-L.; Chou, L.-S. Variability in inter-joint coordination during walking of elderly adults and its association with clinical balance measures. Clin. Biomech. 2013, 28, 454–458. [Google Scholar] [CrossRef]
- Sadeghi, H.; Shojaedin, S.S.; Abbasi, A.; Alijanpour, E.; Vieira, M.F.; Svoboda, Z.; Nazarpour, K. Lower-Extremity Intra-Joint Coordination and Its Variability between Fallers and Non-Fallers during Gait. Appl. Sci. 2021, 11, 2840. [Google Scholar] [CrossRef]
- Latash, M.L.; Levin, M.F.; Scholz, J.P.; Schöner, G. Motor control theories and their applications. Medicina 2010, 46, 382–392. [Google Scholar] [CrossRef]
- Todorov, E.; Jordan, M.I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 2002, 5, 1226–1235. [Google Scholar] [CrossRef]
- Letournel, A.; Marques, M.; Vigário, R.; Quintão, C.; Quaresma, C. Biomechanical Characterisation of Gait in Older Adults: A Cross-Sectional Study Using Inertial Sensor-Based Motion Capture. Bioengineering 2025, 12, 889. [Google Scholar] [CrossRef]
- Robbins, S.M.; Teoli, A.; Huk, O.L.; Zukor, D.J.; Antoniou, J. Inter-segment coordination amplitude and variability during gait in patients with knee osteoarthritis and asymptomatic adults. Gait Posture 2024, 107, 324–329. [Google Scholar] [CrossRef]
- Ogaya, S.; Iwata, A.; Higuchi, Y.; Fuchioka, S. The association between intersegmental coordination in the lower limb and gait speed in elderly females. Gait Posture 2016, 48, 1–5. [Google Scholar] [CrossRef]
- Pol, F.; Baharlouei, H.; Taheri, A.; Menz, H.B.; Forghany, S. Foot and ankle biomechanics during walking in older adults: A systematic review and meta-analysis of observational studies. Gait Posture 2021, 89, 14–24. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Minino, R.; Polverino, A.; Gallo, E.; Mandolesi, L.; Sorrentino, P.; Sorrentino, G.; Lopez, E.T. The Effects of Aging and Cognition on Gait Coordination Analyzed Through a Network Analysis Approach. Biomechanics 2025, 5, 43. [Google Scholar] [CrossRef]
- Mian, O.S.; Thom, J.M.; Ardigò, L.P.; Narici, M.V.; Minetti, A.E. Metabolic cost, mechanical work, and efficiency during walking in young and older men. Acta Physiol. 2006, 186, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Neptune, R.R.; Zajac, F.E.; Kautz, S.A. Muscle force redistributes segmental power for body progression during walking. Gait Posture 2004, 19, 194–205. [Google Scholar] [CrossRef]
- Muehleman, C.; Margulis, A.; Bae, W.C.; Masuda, K. Relationship between knee and ankle degeneration in a population of organ donors. BMC Med. 2010, 8, 48. [Google Scholar] [CrossRef]
- Gordon, D.; Robertson, E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; Whittlesey, S.N. Research Methods in Biomechanics, 2nd ed.; Human Kinetics: Champaign, IL, USA, 2014. [Google Scholar]
- Stenum, J.; Hsu, M.M.; Pantelyat, A.Y.; Roemmich, R.T. Clinical gait analysis using video-based pose estimation: Multiple perspectives, clinical populations, and measuring change. PLoS Digit. Health 2024, 3, e0000467. [Google Scholar] [CrossRef]
- Smith, J.A.; Popovich, J.M., Jr.; Kulig, K. The influence of hip strength on lower-limb, pelvis, and trunk kinematics and coordination patterns during walking and hopping in healthy women. J. Orthop. Sports Phys. Ther. 2014, 44, 525–531. [Google Scholar] [CrossRef]
- Gafner, S.C.; Bastiaenen, C.H.G.; Ferrari, S.; Gold, G.; Trombetti, A.; Terrier, P.; Hilfiker, R.; Allet, L. The Role of Hip Abductor Strength in Identifying Older Persons at Risk of Falls: A Diagnostic Accuracy Study. Clin. Interv. Aging 2020, 15, 645–654. [Google Scholar] [CrossRef]
- Pijnappels, M.; van der Burg, J.C.E.; Reeves, N.D.; van Dieën, J.H. Identification of elderly fallers by muscle strength measures. Eur. J. Appl. Physiol. 2008, 102, 585–592. [Google Scholar] [CrossRef]
- Neptune, R.R.; Clark, D.J.; Kautz, S.A. Modular control of human walking: A simulation study. J. Biomech. 2009, 42, 1282–1287. [Google Scholar] [CrossRef]
- Gillain, S.; Boutaayamou, M.; Schwartz, C.; Dardenne, N.; Bruyère, O.; Brüls, O.; Croisier, J.L.; Salmon, E.; Reginster, J.Y.; Garraux, G.; et al. Gait symmetry in the dual task condition as a predictor of future falls among independent older adults: A 2-year longitudinal study. Aging Clin. Exp. Res. 2019, 31, 1057–1067. [Google Scholar] [CrossRef]
- Khezrian, M.; McNeil, C.J.; Murray, A.D.; Myint, P.K. An overview of prevalence, determinants and health outcomes of polypharmacy. Ther. Adv. Drug Saf. 2020, 11, 2042098620933741. [Google Scholar] [CrossRef]
- Veronese, N.; Stubbs, B.; Noale, M.; Solmi, M.; Pilotto, A.; Vaona, A.; Demurtas, J.; Mueller, C.; Huntley, J.; Crepaldi, G.; et al. Polypharmacy Is Associated With Higher Frailty Risk in Older People: An 8-Year Longitudinal Cohort Study. J. Am. Med. Dir. Assoc. 2017, 18, 624–628. [Google Scholar] [CrossRef]
- Salm, C.; Sauer, J.; Binder, N.; Pfefferle, A.; Sofroniou, M.; Metzner, G.; Farin-Glattacker, E.; Voigt-Radloff, S.; Maun, A. Over- and under-prescribing, and their association with functional disability in older patients at risk of further decline in Germany—A cross-sectional survey conducted as part of a randomised comparative effectiveness trial. BMC Geriatr. 2022, 22, 564. [Google Scholar] [CrossRef]
- Zhao, J.; Han, W.; Tang, H. Lower limbs inter-joint coordination and variability during typical Tai Chi movement in older female adults. Front. Physiol. 2023, 14, 1164923. [Google Scholar] [CrossRef]
- Abe, D.; Motoyama, K.; Tashiro, T.; Saito, A.; Horiuchi, M. Effects of exercise habituation and aging on the intersegmental coordination of lower limbs during walking with sinusoidal speed change. J. Physiol. Anthropol. 2022, 41, 24. [Google Scholar] [CrossRef] [PubMed]




| Anterior View | |
| Marker | Description |
| L/RALH | Left/Right anterior head |
| L/RCAJ | Left/Right acromion |
| SJN | Deepest point of incisura jugularis |
| SXS | Xiphoid process, the most caudal point of the sternum |
| L/RA 1, 2, 3 | Left/Right Cluster arm 1, 2, 3 |
| L/RFA 1, 2, 3 | Left/Right Cluster forearm |
| L/RRAD | Left/Right Radio-Styloid process |
| L/RULN | Left/Right Ulna-Styloid process |
| L/RIAS | Left/Right anterior superior iliac spine |
| L/RFTC | Most lateral prominence of the greater trochanter |
| L/RTH 1, 2, 3, 4 | Left/Right Cluster thigh 1, 2, 3, 4 |
| L/RFLE | Most lateral prominence of the lateral femoral epicondyle |
| L/RFME | Most medial prominence of the medial femoral epicondyle |
| L/RFAX | Proximal tip of the head of the fibula |
| L/RTTC | Most anterior border of the tibial tuberosity |
| L/RSK 1, 2, 3, 4 | Left/Right Cluster shank 1, 2, 3, 4 |
| L/RFAL | Lateral prominence of the lateral malleolus |
| L/RTAM | Most medial prominence of the medial malleolus |
| L/RFM5 | Dorsal margin of the fifth metatarsal head |
| L/RFM2 | Dorsal aspect of the second metatarsal head |
| L/RFM1 | Dorsal margin of the first metatarsal head |
| L/RDR | Left/Right distal radius |
| L/RDU | Left/Right distal ulna |
| Posterior view | |
| L/RPH | Left/Right posterior head |
| CV7 | Spinous process of the seventh cervical vertebrae |
| TV2 | Second thoracic vertebrae |
| TV7 | Midpoint between the inferior angles of the two scapulae |
| LV1 | First lumbar vertebrae |
| LV3 | Third lumbar vertebrae |
| LV5 | Fifth lumbar vertebrae |
| L/RIPS | Left/Right posterior superior iliac spine |
| L/RFCC | Aspect of the Achilles tendon insertion on the calcaneus |
| L/RLELB | Left/Right Lateral Epicondyle of Humerous |
| L/RMELB | Left/Right Medial Epicondyle of Humerous |
| L/RMH | Left/Right Medial Head of 5th metacarpal |
| L/RLH | Left/Right Lateral Head of 5th metacarpal |
| OA (n = 60) | ND (n = 35) | D (n = 25) | p-Value (Test Value) | Effect Size (Cohen’s d/h) | |
|---|---|---|---|---|---|
| Demographic and clinical data | |||||
| Age (years) | 67.86 ± 6.46 | 66.34 ± 5.60 | 68.60 ± 6.77 | 0.147 (534) 1 | −0.37 |
| Sex (n female, %) | 38 (63.3) | 19 (54.29) | 19 (76) | 0.085 (2.961) 2 | −0.46 |
| BMI (kg/m2) | 25.39 ± 2.96 | 25.22 ± 3.08 | 26.02 ± 2.66 | 0.298 (−1.049) 3 | −0.27 |
| History of fall (n fallers, %) | 22 (36.7) | 11 (31.4) | 11 (44) | 0.469 (0.525) 2 | −0.26 |
| Medication (n) | 3.05 ± 2.38 | 2.20 ± 1.61 | 4.24 ± 2.79 | 0.001 * (−3.290) 3 | −0.94 |
| MMSE (score) | 28.74 ± 1.38 | 28.94 ± 1.31 | 28.68 ± 1.49 | 0.495 (394) 1 | 0.19 |
| IPAQ (MET-min/week) | 3193.70 ± 2829.86 | 3186.46 ± 2964.91 | 3519.66 ± 2822.11 | 0.509 (393.5) 1 | −0.11 |
| Gait speed (m/s) | 1.32 ± 0.19 | 1.39 ± 0.17 | 1.23 ± 0.16 | <0.001 *3 (3.815) | 0.96 |
| Principal Component | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|---|
| Explained Variance (%) | 17.66 | 15.67 | 10.47 | 8.47 | 8.17 | 7.45 | 6.41 | 4.57 |
| Sagittal CRP Left Knee–Ankle CV | 0.892 | 0.079 | 0.07 | 0.167 | −0.045 | −0.03 | −0.093 | 0.184 |
| Sagittal CRP Left Hip–Ankle mean | 0.808 | 0.046 | −0.093 | −0.082 | −0.181 | 0.16 | −0.046 | −0.108 |
| Sagittal CRP Left Knee–Ankle mean | −0.889 | 0.003 | 0.029 | −0.013 | 0.123 | −0.116 | 0.087 | −0.109 |
| Sagittal CRP Right Knee–Ankle CV | 0.799 | 0.084 | 0.116 | 0.04 | 0.138 | 0.032 | −0.018 | 0.068 |
| Sagittal CRP Right Hip–Ankle mean | 0.787 | −0.048 | −0.004 | −0.081 | 0.068 | 0.004 | 0.261 | −0.159 |
| Frontal CRP Left Knee–Ankle CV | 0.055 | 0.812 | 0.026 | 0.036 | 0.094 | 0.103 | 0.107 | 0.315 |
| Frontal CRP Knee intersegmental mean | 0.045 | −0.824 | 0.152 | 0.016 | 0.051 | 0.003 | 0.203 | 0.24 |
| Frontal CRP Left Knee–Ankle mean | −0.057 | −0.855 | −0.044 | −0.028 | −0.099 | −0.119 | −0.012 | −0.204 |
| Frontal CRP Left Hip–Knee mean | 0.115 | 0.79 | −0.019 | −0.015 | 0.177 | 0.022 | −0.142 | 0.06 |
| Frontal CRP Knee intersegmental CV | −0.036 | 0.763 | −0.175 | −0.01 | −0.037 | −0.072 | −0.233 | −0.289 |
| Transverse CRP Left Hip–Knee mean | 0.009 | −0.119 | 0.965 | 0.007 | −0.039 | −0.023 | 0.054 | 0.008 |
| Transverse CRP Left Hip–Knee CV | −0.036 | 0.057 | −0.944 | −0.004 | 0.098 | 0.134 | −0.027 | −0.058 |
| Transverse CRP Hip intersegmental CV | 0.088 | −0.018 | −0.008 | 0.928 | 0.049 | 0.004 | −0.072 | 0.03 |
| Transverse CRP Hip intersegmental mean | 0.041 | −0.038 | −0.007 | −0.923 | 0.053 | 0.121 | −0.042 | 0.003 |
| Frontal CRP Right Hip–Knee mean | 0.037 | 0.138 | 0.003 | 0.058 | 0.863 | −0.021 | 0.047 | −0.09 |
| Frontal CRP Right Knee–Ankle mean | 0.109 | −0.146 | 0.141 | 0.015 | −0.847 | 0.051 | −0.082 | 0.112 |
| Transverse CRP Right Hip–Ankle mean | −0.118 | −0.3 | −0.096 | −0.232 | 0.448 | 0.169 | −0.425 | 0.296 |
| Transverse CRP Left Knee–Ankle mean | 0.09 | 0.141 | −0.055 | −0.028 | −0.014 | 0.897 | 0.045 | −0.191 |
| Transverse CRP Left Knee–Ankle CV | −0.148 | −0.013 | 0.105 | 0.077 | 0.043 | −0.893 | −0.044 | −0.129 |
| Sagittal CRP Ankle intersegmental mean | −0.007 | −0.157 | 0.043 | −0.072 | 0.015 | −0.025 | 0.848 | 0.024 |
| Transverse CRP Ankle intersegmental mean | −0.039 | −0.184 | 0.029 | 0.017 | 0.101 | 0.14 | 0.834 | 0.114 |
| Transverse CRP Knee intersegmental CV | −0.089 | −0.098 | 0.196 | 0.421 | 0.17 | 0.339 | −0.061 | −0.588 |
| Frontal CRP Ankle intersegmental mean | 0.063 | 0.095 | 0.322 | 0.255 | −0.225 | 0.045 | 0.123 | 0.556 |
| p-value (test value) | 0.007 * (257) | 0.994 (437) | 0.304 (369) | 0.380 (379) | 0.970 (435) | 0.284 (366) | 0.637 (406) | 0.467 (389) |
| Effect size (Cohen’s d) | −0.66 | 0.06 | −0.25 | 0.21 | −0.01 | 0.32 | 0.11 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Moreira, J.; Alves, L.A.T.; Oliveira-Sousa, R.; Castro, M.; Santos, R.; Sousa, A.S.P. Principal Component Analysis of Gait Continuous Relative Phase (CRP): Uncovering Lower Limb Coordination Biomarkers for Functional Disability in Older Adults. Symmetry 2026, 18, 228. https://doi.org/10.3390/sym18020228
Moreira J, Alves LAT, Oliveira-Sousa R, Castro M, Santos R, Sousa ASP. Principal Component Analysis of Gait Continuous Relative Phase (CRP): Uncovering Lower Limb Coordination Biomarkers for Functional Disability in Older Adults. Symmetry. 2026; 18(2):228. https://doi.org/10.3390/sym18020228
Chicago/Turabian StyleMoreira, Juliana, Leonel A. T. Alves, Rúben Oliveira-Sousa, Márcia Castro, Rubim Santos, and Andreia S. P. Sousa. 2026. "Principal Component Analysis of Gait Continuous Relative Phase (CRP): Uncovering Lower Limb Coordination Biomarkers for Functional Disability in Older Adults" Symmetry 18, no. 2: 228. https://doi.org/10.3390/sym18020228
APA StyleMoreira, J., Alves, L. A. T., Oliveira-Sousa, R., Castro, M., Santos, R., & Sousa, A. S. P. (2026). Principal Component Analysis of Gait Continuous Relative Phase (CRP): Uncovering Lower Limb Coordination Biomarkers for Functional Disability in Older Adults. Symmetry, 18(2), 228. https://doi.org/10.3390/sym18020228

