Automated Detection of Motor Activity Signatures from Electrophysiological Signals by Neural Network
Abstract
1. Introduction
2. Materials and Methods
2.1. Proposed Framework
2.2. Power Spectral Density
2.3. Welch’s Method
2.4. Wavelet Transform
2.5. Classification
2.6. Extended Spectral and Channel-Based Analysis
3. Results
3.1. Classification Results
3.2. Spectral and Channel-Based Analysis Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nasir, T.B.; Lalin, M.A.M.; Niaz, K.; Karim, M.R.; Rahman, M.A. EEG based human assistance rover for domestic application. In Proceedings of the IEEE 2nd International Conference on Ro-botics, Electrical and Signal Processing Techniques (ICREST). Dhaka, Bangladesh, 5–7 January 2021; pp. 461–466. [Google Scholar]
- Ko, W.; Jeon, E.; Jeong, S.; Suk, H.I. Multi-scale neural network for EEG representation learning in BCI. IEEE Comput. Intell. Mag. 2021, 16, 31–45. [Google Scholar] [CrossRef]
- Schirrmeister, R.T.; Springenberg, J.T.; Fiederer, L.D.J.; Glasstetter, M.; Eggensperger, K.; Tangermann, M.; Hutter, F.; Burgard, W.; Ball, T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 2017, 38, 5391–5420. [Google Scholar] [CrossRef]
- Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wang, J.; Zhang, L.; Wei, Q. Motion imagery-BCI based on EEG and eye movement data fusion. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2783–2793. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, Z.; Yu, T.; He, S.; Li, Y. An EEG-/EOG-based hybrid brain-computer interface: Application on controlling an integrated wheelchair robotic arm system. Front. Neurosci. 2019, 13, 1243. [Google Scholar] [CrossRef]
- Ieracitano, C.; Mammone, N.; Hussain, A.; Morabito, F.C. A novel explainable machine learning approach for EEG-based brain-computer interface systems. Neural Comput. Appl. 2021, 34, 11347–11360. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Wu, Z.; Sun, B.; Li, T. Motor imagery recognition with automatic EEG channel selection and deep learning. J. Neural Eng. 2021, 18, 016004. [Google Scholar] [CrossRef]
- Blankertz, B.; Dornhege, G.; Krauledat, M.; Müller, K.R.; Curio, G. The Berlin Brain-Computer Interface: Machine learning based detection of user specific brain states. Neuroimage 2007, 37, 539–550. [Google Scholar] [CrossRef]
- Medhi, K.; Hoque, N.; Dutta, S.K.; Hussain, M.I. An efficient EEG signal classification technique for Brain–Computer Interface using hybrid Deep Learning. Biomed. Signal Process. Control 2022, 78, 104005. [Google Scholar] [CrossRef]
- Ak, A.; Topuz, V.; Midi, I. Motor imagery EEG signal classification using image processing technique over GoogLeNet deep learning algorithm for controlling the robot manipulator. Biomed. Signal Process. Control 2022, 72, 103295. [Google Scholar] [CrossRef]
- Altuwaijri, G.A.; Muhammad, G.; Altaheri, H.; Alsulaiman, M. A multi-branch convolutional neural network with squeeze and excitation attention blocks for EEG-based motor imagery signals classification. Diagnostics 2022, 12, 995. [Google Scholar] [CrossRef]
- Roy, A.M. An efficient multi-scale CNN model with intrinsic feature integration for motor imagery EEG subject classification in brain-machine interfaces. Biomed. Signal Process. Control 2022, 74, 103496. [Google Scholar] [CrossRef]
- Hwaidi, J.F.; Chen, T.M. Classification of motor imagery EEG signals based on deep autoencoder and convolutional neural network approach. IEEE Access 2022, 10, 48071–48081. [Google Scholar] [CrossRef]
- Wu, D.; Jiang, X.; Peng, R. Transfer learning for motor imagery based brain–computer interfaces: A tutorial. Neural Netw. 2022, 153, 235–253. [Google Scholar] [CrossRef]
- Lazcano-Herrera, A.G.; Fuentes-Aguilar, R.Q.; Ramirez-Morales, A.; Alfaro-Ponce, M. BiLSTM and SqueezeNet with Transfer Learning for EEG Motor Imagery classification: Validation with own dataset. IEEE Access 2023, 11, 136422–136436. [Google Scholar] [CrossRef]
- Mathiyazhagan, S.; Devasena, M.S.G. Motor imagery EEG signal classification using novel deep learning algorithm. Sci. Rep. 2025, 15, 24539. [Google Scholar] [CrossRef]
- Chen, W.; Xu, S.; Hu, Q.; Peng, Y.; Zhang, H.; Zhang, J.; Chen, Z. A Novel Deep Learning Model for Motor Imagery Classification in Brain–Computer Interfaces. Information 2025, 16, 582. [Google Scholar] [CrossRef]
- Liao, W.; Miao, Z.; Liang, S.; Zhang, L.; Li, C. A composite improved attention convolutional network for motor imagery EEG classification. Front. Neurosci. 2025, 19, 1543508. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Yu, P. Feature-aware domain invariant representation learning for EEG motor imagery decoding. Sci. Rep. 2025, 15, 10664. [Google Scholar] [CrossRef]
- Morales, O.W.G.; Huertas, D.F.C.; Meza, A.M.A.; Dominguez, C.G.C. EEG Signal Prediction for Motor Imagery Classification in Brain–Computer Interfaces. Sensors 2025, 25, 2259. [Google Scholar] [CrossRef]
- Hadi-Saleh, Z.; Mosleh, M.; Al-Shahe, M.A.; Mosleh, M. Towards decoding motor imagery from EEG signal using optimized back propagation neural network with honey badger algorithm. Sci. Rep. 2025, 15, 21202. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Zhang, D. A Cross-Attention-Based Class Alignment Network for Cross-Subject EEG Classification in a Heterogeneous Space. Sensors 2024, 24, 7080. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.K.G.; Sharma, R. Enhancing motor imagery classification: A novel CNN with self-attention using local and global features of filtered EEG data. Connect. Sci. 2024, 36, 2426812. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Ming, D. Early-stage fusion of EEG and fNIRS improves classification of motor imagery. Front. Neurosci. 2023, 9, 1062889. [Google Scholar] [CrossRef]
- Batistić, L.; Lerga, J.; Stanković, I. Detection of motor imagery based on short-term entropy of time–frequency representations. Biomed. Eng. Online 2023, 22, 41. [Google Scholar] [CrossRef]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A General Purpose Brain-Computer Interface (BCI) System. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef]
- Goldberger, A.; Amaral, L.; Glass, L.; Hausdorff, J.; Ivanov, P.C.; Mark, R.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef]
- Bitbrain Technologies. Versatile EEG: Portable and Wireless Water-Based EEG Cap with 8, 16, 32 and 64 Channels. Available online: https://www.bitbrain.com/neurotechnology-products/water-based-eeg/versatile-eeg (accessed on 29 August 2025).
- Fıçıcı, C.; Telatar, Z.; Eroğul, O. Automated temporal lobe epilepsy and psychogenic nonepileptic seizure patient discrimination from multi-channel EEG recordings using DWT based analysis. Biomed. Signal Process. Control 2022, 77, 103755. [Google Scholar] [CrossRef]
- Kay, S. Modern Spectral Estimation: Theory and Application; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1988. [Google Scholar]
- Arnaud Delorme. EEGLAB. 2025. Available online: https://github.com/sccn/eeglab (accessed on 25 July 2025).
- Delorme, A.; Makeig, S. EEGLAB: An open source toolbox for analysis of single trial EEG dynamics including independent component analysis. J. Neurosci. Methods 2004, 15, 9–21. [Google Scholar] [CrossRef] [PubMed]



















| Sub-Band | Frequency Ranges (Hz) |
|---|---|
| Delta | 0.5–4 |
| Theta | 4–8 |
| Alpha | 8–13 |
| Beta | 13–30 |
| Gamma | 30–45 |
| EEG Channel | Sub-Band | Method | Accuracy |
|---|---|---|---|
| C3 | Delta, theta, alpha, beta, gamma | Decision tree | 83.7% |
| Fp1 | Delta, theta, alpha, beta, gamma | Bilayered neural network | 92.9% |
| EEG Channel | Sub-Band | Method | Accuracy |
|---|---|---|---|
| Fp1 | Delta | Trilayered NN | 76.5% |
| Fp1 | Theta | Decision tree | 69.9% |
| Fp1 | Alpha | Decision tree | 67.6% |
| Fp1 | Beta | Decision tree | 63.0% |
| Fp1 | Gamma | Subspace discriminant | 62.3% |
| Fp1 | All sub-bands used together (Delta, theta, alpha, beta, gamma) | Bilayered NN | 92.9% |
| Author | Method | Features | Accuracy |
|---|---|---|---|
| Nasir et al. [1] | Attention level and blink rate measurement | EEG signal amplitude | 71% |
| Roy et al. [13] | Action/imagery signal classification by using deep learning | - | 93.74% |
| Hwaidi et al. [14] | Action/imagery signal classification by using CNN | - | 96.59% |
| Wu et al. [15] | Eye movement classification | Features obtained by transfer learning | 83.47% |
| Lazcano-Herrera et al. [16] | BILSTM and CNN | Subspace discriminant | 91.25% and 92.33% |
| Proposed study | NN | Fp1 channel power | 92.9% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocak, O. Automated Detection of Motor Activity Signatures from Electrophysiological Signals by Neural Network. Symmetry 2025, 17, 1472. https://doi.org/10.3390/sym17091472
Kocak O. Automated Detection of Motor Activity Signatures from Electrophysiological Signals by Neural Network. Symmetry. 2025; 17(9):1472. https://doi.org/10.3390/sym17091472
Chicago/Turabian StyleKocak, Onur. 2025. "Automated Detection of Motor Activity Signatures from Electrophysiological Signals by Neural Network" Symmetry 17, no. 9: 1472. https://doi.org/10.3390/sym17091472
APA StyleKocak, O. (2025). Automated Detection of Motor Activity Signatures from Electrophysiological Signals by Neural Network. Symmetry, 17(9), 1472. https://doi.org/10.3390/sym17091472

