Enhancing Sensitivity of Nonparametric Tukey Extended EWMA-MA Charts for Effective Process Mean Monitoring
Abstract
1. Introduction
2. The General Model of Control Charts
2.1. The MA Control Chart
2.2. The EEWMA Control Chart
2.3. The EEWMA-MA Control Chart
- (i)
- Enhanced sensitivity to small and moderate shifts: EEWMA is particularly sensitive to slight changes in a process because it gives more weight to newer data. MA smooths down short-term changes, making them less noisy and easier to find when they are modest. When combined, the EEWMA-MA chart can detect a wider variety of shift sizes, which improves its ability to find shifts in general.
- (ii)
- Less noise and smoother signals: MA smooths out random noise, which reduces variability. EEWMA already smooths data by giving more weight to more recent data. They work together to make a control chart that is less likely to give false alerts but still responds to important changes.
- (iii)
- Customization flexibility: The weights in the EEWMA and the span size in the MA can be changed to fit the needs of the process. The EEWMA-MA chart can be used in a wide range of industrial and non-industrial settings since it is so flexible.
- (iv)
- A better Average Run Length (ARL) profile: Mixed charts usually have superior ARL performance, namely longer latency to false alarm when in control and higher ARL0. Lower ARL1 means that things may be found more quickly when they are out of hand. Due to this double benefit, EEWMA-MA is more effective than either EEWMA or MA alone.
2.4. The Tukey Control Chart
2.5. The Proposed Nonparametric EEWMA-MA Control Chart
3. The Run Length Method of the Control Chart
4. Analysis Study
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SPC | Statistical process control |
EWMA | Exponentially weighted moving average control chart |
MA | Moving average control chart |
EEWMA | Extended exponentially weighted moving average control chart |
References
- Shewhart, W.A. Economic Control of Quality of Manufactured Product; D. Van Nostrand Co.: New York, NY, USA, 1931. [Google Scholar]
- Page, E.S. Continuous Inspection Schemes. Biometrika 1954, 41, 100–115. [Google Scholar] [CrossRef]
- Roberts, S.W. Control Chart Tests Based on Geometric Moving Averages. Technometrics 1959, 1, 239–250. [Google Scholar] [CrossRef]
- Khoo, M.B.C. A Moving Average Control Chart for Monitoring the Fraction Non-conforming. Qual. Reliab. Eng. Int. 2004, 20, 617–635. [Google Scholar] [CrossRef]
- Naveed, M.; Azam, M.; Khan, N.; Aslam, M. Design of a Control Chart Using Extended EWMA Statistic. Technologies 2018, 6, 108. [Google Scholar] [CrossRef]
- Patel, A.K.; Divecha, J. Modified Exponentially Weighted Moving Average (EWMA) Control Chart for an Analytical Process Data. J. Chem. Eng. Mater. Sci. 2011, 2, 12–20. [Google Scholar]
- Khan, N.; Yasmin, T.; Alsam, M.; Jun, C.H. On the Performance of Modified EWMA Charts using Resampling Schemes. Oper. Res. Decis. 2018, 28, 29–43. [Google Scholar] [CrossRef]
- Shamma, S.E.; Shamma, A.K. Development and Evaluation of Control Charts using Double Exponentially Weighted Moving Averages. Int. J. Qual. Reliab. Manag. 1992, 9, 18–25. [Google Scholar] [CrossRef]
- Alevizakos, V.; Chatterjee, K.; Koukouvinos, C. The Triple Exponentially Weighted Moving Average Control Chart. Qual. Technol. Quant. Manag. 2021, 18, 326–354. [Google Scholar] [CrossRef]
- Abbas, N. Homogeneously Weighted Moving Average Control Chart with an Application in Substrate Manufacturing Process. Comput. Ind. Eng. 2018, 120, 460–470. [Google Scholar] [CrossRef]
- Osei-Aning, R.; Abbasi, S.A.; Riaz, M. Mixed EWMA-CUSUM and mixed CUSUM-EWMA Modified Control Charts for Monitoring First Order Autoregressive Processes. Qual. Technol. Quant. Manag. 2017, 14, 429–453. [Google Scholar] [CrossRef]
- Alevizakos, V.; Chatterjee, K.; Koukouvinos, C. The Triple Moving Average Control Chart. J. Comput. Appl. Math. 2021, 384, 113171. [Google Scholar] [CrossRef]
- Aslam, M.; Gui, W.; Khan, N.; Jun, C.-H. Double Moving Average–EWMA Control Chart for Exponentially Distributed Quality. Commun. Stat. Simul. Comput. 2017, 46, 7351–7364. [Google Scholar] [CrossRef]
- Abid, M.; Mei, S.; Nazir, H.Z.; Riaz, M.; Hussain, S.A. A Mixed HWMA-CUSUM Mean Chart with an Application to Manufacturing Process. Qual. Reliab. Eng. Int. 2021, 37, 618–631. [Google Scholar] [CrossRef]
- Raza, M.A.; Iqbal, K.; Aslam, M.; Nawaz, T.; Bhatti, S.H.; Engmann, G.M. Mixed Exponentially Weighted Moving Average-Moving Average Control Chart Applied to the Combined Cycle Power Plant. Sustainability 2023, 15, 3239. [Google Scholar] [CrossRef]
- Naveed, M.; Azam, M.; Nawaz, M.S.; Saleem, M.; Aslam, M.; Saeed, M. Design of Moving Average Chart and Auxiliary Information Based Chart using Extended EWMA. Sci. Rep. 2023, 13, 5562. [Google Scholar] [CrossRef] [PubMed]
- Zubair, F.; Ahmad Khan Sherwani, R.; Abid, M. Enhanced Performance of Mixed HWMA-CUSUM Charts using Auxiliary Information. PLoS ONE 2023, 18, e0290727. [Google Scholar] [CrossRef]
- Devianto, D.; Maiyastri, Y.; Asdi, S.; Maryati, S.; Sari, P.; Hidayat, R. The Mixed MEWMA and MCUSUM Control Chart Design of Efficiency Series Data of Production Quality Process Monitoring. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 841–846. [Google Scholar] [CrossRef]
- Raza, M.A.; Tariq, F.; Zaagan, A.A.; Engmann, G.M.; Mahnashi, A.M.; Meetei, M.Z. A Nonparametric Mixed Exponentially Weighted Moving Average-Moving Average Control Chart with an Application to Gas Turbines. PLoS ONE 2024, 19, e0307559. [Google Scholar] [CrossRef]
- Alemi, F. Tukey’s Control Chart. Qual. Manag. Health Care 2004, 13, 216–221. [Google Scholar] [CrossRef]
- Stromberg, A.J.; Griffith, W.; Smith, M. Control Charts for the Median and Interquartile Range. In Developments in Robust Statistics; Springer: Heidelberg, Germany, 2003; pp. 368–376. [Google Scholar] [CrossRef]
- Noorossana, R.; Vaghefi, A.; Amiri, A. Statistical Analysis of Profile Monitoring; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Shevlyakov, G.; Andrea, K.; Choudur, L.; Smirnov, P.; Ulanov, A.; Vassilieva, N. Robust Versions of The Tukey Boxplot with their Application to Detection of Outliers. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013. [Google Scholar] [CrossRef]
- Riaz, M.; Khaliq, Q.-U.-A.; Gul, S. Mixed Tukey EWMA-CUSUM Control Chart and Its Applications. Qual. Technol. Quant. Manag. 2017, 14, 378–411. [Google Scholar] [CrossRef]
- Khaliq, Q.-U.-A.; Riaz, M.; Alemi, F. Performance of Tukey’s and Individual/Moving Range Control Charts. Qual. Reliab. Eng. Int. 2015, 31, 1063–1077. [Google Scholar] [CrossRef]
- Adsiz, S.; Aytacoglu, B. Tukey-EWMA Control Chart with Variable Sampling Intervals for Process Monitoring. Qual. Eng. 2024, 36, 249–272. [Google Scholar] [CrossRef]
- Talordphop, K.; Sukparungsee, S.; Areepong, Y. Performance of New Nonparametric Tukey Modified Exponentially Weighted Moving Average—Moving Average Control Chart. PLoS ONE 2022, 17, e0275260. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shawiesh, M.O.A.; Akyüz, H.E.; Migdadi, H.S.A.; Golam Kibria, B.M. Robust Alternatives to the Tukey’s Control Chart for the Monitoring of the Statistical Process Mean. Int. J. Qual. Res. 2019, 13, 641–654. [Google Scholar] [CrossRef]
- Khaliq, Q.-U.-A.; Riaz, M.; Ahmad Arshad, I.; Gul, S. On the Performance of Median-Based Tukey and Tukey-EWMA Charts under Rational Subgrouping. Sci. Iran. 2021, 28, 547–556. [Google Scholar] [CrossRef]
- Khaliq, Q.-U.-A.; Riaz, M.; Ahmad, S. On Designing a New Tukey-EWMA Control Chart for Process Monitoring. Int. J. Adv. Manuf. Tech. 2016, 82, 1–23. [Google Scholar] [CrossRef]
- Mahmood, Y.; Khoo, M.B.C.; The, S.Y.; Saha, S. On Designing TEWMA-Tukey Control Charts for Normal and Non-Normal Processes using Single and Repetitive Sampling Schemes. Comput. Ind. Eng. 2022, 170, 108343. [Google Scholar] [CrossRef]
- Talordphop, K.; Sukparungsee, S.; Areepong, Y. An Empirical Assessment of Tukey Combined Extended Exponentially Weighted Moving Average Control Chart. AIMS Math. 2025, 10, 3945–3960. [Google Scholar] [CrossRef]
- Raghav, Y.S.; Mradula; Varshney, R.; Modibbo, U.M.; Ahmadini, A.A.H.; Ali, I. Estimation and Optimization for System Availability Under Preventive Maintenance. IEEE Access 2022, 10, 94337–94353. [Google Scholar] [CrossRef]
- Raghav, Y.S.; Ahmadini, A.A.H.; Mahnashi, A.M.; Rather, K.U.I. Enhancing Estimation Efficiency with Proposed Estimator: A Comparative Analysis of Poisson Regression-Based Mean Estimators. Kuwait J. Sci. 2025, 52, 100282. [Google Scholar] [CrossRef]
- Peerajit, W. Optimizing the EWMA Control Chart to Detect Changes in the Mean of a Long-Memory Seasonal Fractionally Integrated Moving Average and an Exogenous Variable Process with Exponential White Noise and Its Application to Electrical Output Data. WSEAS Trans. Math. 2025, 20, 25–41. [Google Scholar] [CrossRef]
- Peerajit, W. Developing Average Run Length for Monitoring Changes in the Mean on the Presence of Long Memory under Seasonal Fractionally Integrated MAX Model. Math. Stat. 2023, 11, 34–50. [Google Scholar] [CrossRef]
- Alevizakos, V.; Chatterjee, A.; Chatterjee, K.; Koukouvinos, C. The Exponentiated Exponentially Weighted Moving Average Control Chart. Stat. Pap. 2024, 65, 3853–3891. [Google Scholar] [CrossRef]
- Schaffer, J.R.; Kim, M.J. Number of Replications Required in Control Chart Monte Carlo Simulation Studies. Commun. Stat. Simul. Comput. 2007, 36, 1075–1087. [Google Scholar] [CrossRef]
- Cheng, S.S.; Yu, F.-J.; Yang, S.-T.; Hou, J.-L. The Parameter Selection and Average Run Length Computation for EWMA Control Charts. In IJCCI 2014—NCTA, Proceedings of the International Conference on Neural Computation Theory and Applications, Rome, Italy, 22–24 October 2014; SciTePress: Setúbal, Portugal, 2014; pp. 294–299. [Google Scholar] [CrossRef]
- Maravelakis, P.E. Measurement Error Effect on the CUSUM Control Chart. J. Appl. Stat. 2011, 39, 323–336. [Google Scholar] [CrossRef]
- Montgomery, D.C. Introduction to Statistical Quality Control, 8th ed.; Wiley: Hoboken, NJ, USA, 2020. [Google Scholar]
- de Vargas, V.D.C.C.; Lopes, L.F.D.; Souza, A.M. Comparative Study of the Performance of the CUSUM and EWMA Control Charts. Comput. Ind. Eng. 2004, 46, 707–724. [Google Scholar] [CrossRef]
- Aparisi, F.; García-Daíz, J.C. Optimization of EWMA and MEWMA control charts using genetic algorithms. Comput. Oper. Res. 2003, 31, 1437–1454. [Google Scholar] [CrossRef]
- Korkmaz Tan, R.; Bora, Ş. Parameter Tuning Algorithms in Modeling and Simulation. Int. J. Eng. Sci. Appl. 2017, 1, 58–66. [Google Scholar]
- Saengsura, N.; Sukparungsee, S.; Areepong, Y. A New Nonparametric Tukey CUSUM-MA Control Chart for Detecting Mean Shifts. Thail. Stat. 2022, 21, 125–136. [Google Scholar]
- Taboran, R.; Sukparungsee, S.; Areepong, Y. Design of a New Tukey MA-DEWMA Control Chart to Monitor Process and its Applications. IEEE Access 2021, 9, 102746–102757. [Google Scholar] [CrossRef]
- Shanker, R.; Fesshaye, H.; Selvaraj, S. On Modeling of Lifetimes Data using Exponential and Lindley Distributions. Biom. Biostat. Int. J. 2015, 2, 140–147. [Google Scholar] [CrossRef]
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.14 | 370.62 | 370.44 | 370.08 | 370.95 | 370.50 | 370.18 |
0.05 | 360.60 | 345.27 | 335.46 | 227.14 | 321.40 | 314.25 | 220.55 |
0.1 | 338.53 | 307.31 | 263.43 | 201.44 | 233.16 | 228.17 | 198.31 |
0.2 | 233.25 | 153.20 | 141.18 | 89.55 | 118.70 | 106.13 | 87.26 |
0.3 | 112.63 | 96.69 | 76.14 | 54.86 | 61.18 | 56.93 | 52.21 |
0.5 | 97.62 | 41.66 | 29.14 | 25.84 | 26.23 | 24.54 | 22.66 |
1 | 11.14 | 13.16 | 7.52 | 7.48 | 9.18 | 8.35 | 7.46 |
1.5 | 4.51 | 5.23 | 4.64 | 4.59 | 5.18 | 4.52 | 4.57 |
2 | 2.52 | 2.66 | 2.61 | 2.60 | 3.43 | 2.60 | 2.59 |
3 | 1.15 | 1.71 | 1.66 | 1.80 | 1.69 | 1.49 | 1.38 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.94 | 370.62 | 370.56 | 370.45 | 370.95 | 370.60 | 370.42 |
0.05 | 348.61 | 345.27 | 334.99 | 226.94 | 321.40 | 313.78 | 210.65 |
0.1 | 307.91 | 307.31 | 260.57 | 200.73 | 233.16 | 224.82 | 200.66 |
0.2 | 163.76 | 153.20 | 134.33 | 88.08 | 118.70 | 104.47 | 82.35 |
0.3 | 99.87 | 96.69 | 71.63 | 49.21 | 61.18 | 55.13 | 42.79 |
0.5 | 50.99 | 41.66 | 26.91 | 24.88 | 26.23 | 23.81 | 21.67 |
1 | 10.06 | 13.16 | 6.66 | 6.37 | 9.18 | 7.73 | 6.33 |
1.5 | 3.76 | 5.23 | 3.95 | 3.77 | 5.18 | 4.17 | 3.78 |
2 | 1.98 | 2.66 | 2.05 | 1.99 | 3.43 | 2.03 | 1.99 |
3 | 1.10 | 1.71 | 1.47 | 1.45 | 1.69 | 1.32 | 1.30 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.46 | 370.62 | 370.65 | 370.52 | 370.95 | 370.18 | 370.51 |
0.05 | 250.54 | 345.27 | 331.76 | 223.42 | 321.40 | 321.16 | 220.11 |
0.1 | 204.39 | 307.31 | 246.41 | 189.55 | 233.16 | 222.08 | 187.48 |
0.2 | 160.16 | 153.20 | 119.56 | 87.23 | 118.70 | 98.83 | 85.67 |
0.3 | 93.33 | 96.69 | 61.02 | 47.73 | 61.18 | 51.06 | 46.64 |
0.5 | 21.13 | 41.66 | 22.17 | 20.95 | 26.23 | 21.96 | 19.32 |
1 | 13.62 | 13.16 | 5.26 | 5.11 | 9.18 | 6.98 | 4.92 |
1.5 | 1.46 | 5.23 | 2.16 | 2.09 | 5.18 | 3.71 | 2.03 |
2 | 1.08 | 2.66 | 1.17 | 1.16 | 3.43 | 1.31 | 1.13 |
3 | 1.00 | 1.71 | 1.05 | 1.04 | 1.69 | 1.07 | 1.02 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.45 | 370.32 | 370.36 | 370.55 | 370.45 | 370.53 | 370.54 |
0.05 | 369.73 | 359.45 | 359.36 | 327.43 | 356.95 | 346.43 | 326.12 |
0.1 | 366.51 | 341.72 | 339.16 | 284.44 | 339.95 | 303.43 | 282.33 |
0.2 | 360.20 | 331.95 | 316.44 | 245.95 | 303.46 | 155.96 | 242.46 |
0.3 | 355.09 | 318.95 | 289.94 | 157.97 | 271.60 | 128.97 | 155.44 |
0.5 | 318.45 | 286.46 | 230.45 | 111.98 | 196.38 | 112.97 | 90.06 |
1 | 224.40 | 190.41 | 180.47 | 127.99 | 170.82 | 164.98 | 116.54 |
1.5 | 145.23 | 139.83 | 109.48 | 82.49 | 123.01 | 93.64 | 62.23 |
2 | 92.48 | 77.87 | 55.99 | 50.00 | 77.61 | 53.97 | 40.03 |
3 | 36.39 | 15.15 | 15.09 | 10.10 | 15.14 | 10.08 | 9.67 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.19 | 370.32 | 370.42 | 370.82 | 370.45 | 370.92 | 370.80 |
0.05 | 369.43 | 359.45 | 357.92 | 320.43 | 356.95 | 345.42 | 318.83 |
0.1 | 366.20 | 341.72 | 336.43 | 281.94 | 339.95 | 304.43 | 280.05 |
0.2 | 348.82 | 331.95 | 315.43 | 242.45 | 303.46 | 305.43 | 240.23 |
0.3 | 335.06 | 318.95 | 257.44 | 154.46 | 271.60 | 252.93 | 152.84 |
0.5 | 290.34 | 286.46 | 229.45 | 184.98 | 196.38 | 228.45 | 182.25 |
1 | 170.06 | 190.41 | 152.96 | 121.99 | 170.82 | 124.47 | 115.33 |
1.5 | 93.46 | 139.83 | 91.13 | 82.39 | 123.01 | 68.98 | 62.20 |
2 | 52.75 | 67.87 | 51.03 | 42.19 | 67.61 | 33.99 | 42.03 |
3 | 19.75 | 15.15 | 11.58 | 10.21 | 15.14 | 8.99 | 8.80 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.38 | 370.32 | 370.43 | 370.42 | 370.45 | 370.44 | 370.45 |
0.05 | 365.33 | 359.45 | 353.42 | 317.43 | 356.95 | 345.43 | 315.22 |
0.1 | 362.27 | 341.72 | 325.43 | 261.44 | 339.95 | 303.93 | 260.16 |
0.2 | 338.36 | 331.95 | 303.93 | 197.46 | 303.46 | 282.44 | 196.67 |
0.3 | 310.82 | 318.95 | 256.44 | 155.46 | 271.60 | 246.94 | 152.19 |
0.5 | 242.92 | 286.46 | 222.95 | 196.48 | 196.38 | 205.95 | 181.78 |
1 | 111.09 | 139.41 | 132.97 | 118.49 | 130.82 | 121.97 | 114.43 |
1.5 | 53.63 | 39.83 | 30.98 | 23.99 | 23.01 | 30.68 | 22.18 |
2 | 29.74 | 27.87 | 24.29 | 20.99 | 27.61 | 21.99 | 20.98 |
3 | 11.86 | 15.15 | 11.02 | 10.00 | 15.14 | 8.49 | 8.32 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.65 | 370.04 | 370.65 | 370.58 | 370.72 | 370.44 | 370.62 |
0.05 | 369.06 | 357.90 | 345.57 | 342.25 | 336.50 | 329.20 | 325.87 |
0.1 | 341.59 | 322.36 | 299.42 | 295.96 | 264.04 | 252.93 | 250.64 |
0.2 | 293.12 | 219.37 | 180.22 | 171.84 | 139.39 | 128.64 | 124.27 |
0.3 | 222.76 | 143.31 | 104.86 | 101.61 | 78.59 | 71.72 | 68.80 |
0.5 | 123.75 | 59.71 | 41.44 | 39.55 | 34.16 | 30.66 | 25.54 |
1 | 27.35 | 14.18 | 10.02 | 8.44 | 11.29 | 10.00 | 8.36 |
1.5 | 8.28 | 6.56 | 4.53 | 4.43 | 6.33 | 5.43 | 4.41 |
2 | 3.47 | 3.87 | 2.58 | 2.33 | 4.20 | 3.54 | 2.30 |
3 | 1.32 | 1.78 | 1.00 | 1.00 | 2.28 | 1.85 | 1.00 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.87 | 370.04 | 370.62 | 370.61 | 370.72 | 371.02 | 370.53 |
0.05 | 358.69 | 357.90 | 341.30 | 340.51 | 336.50 | 340.50 | 323.32 |
0.1 | 333.61 | 322.36 | 283.74 | 280.61 | 264.04 | 250.77 | 241.84 |
0.2 | 253.55 | 219.37 | 168.13 | 166.68 | 139.39 | 129.39 | 123.88 |
0.3 | 171.63 | 143.31 | 94.22 | 91.95 | 78.59 | 68.76 | 65.51 |
0.5 | 76.95 | 59.71 | 35.93 | 33.39 | 34.16 | 29.24 | 24.43 |
1 | 15.38 | 14.18 | 8.66 | 8.25 | 11.29 | 9.35 | 8.11 |
1.5 | 5.31 | 6.56 | 3.81 | 3.52 | 6.33 | 5.04 | 3.42 |
2 | 2.64 | 3.87 | 2.15 | 2.10 | 4.20 | 3.29 | 2.08 |
3 | 1.24 | 1.78 | 0.73 | 0.70 | 2.28 | 1.67 | 1.00 |
Shift | MA | ||||||
---|---|---|---|---|---|---|---|
EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | EEWMA | EEWMA-MA | Nonparametric EEWMA-MA | ||
0 | 370.80 | 370.04 | 370.82 | 370.71 | 370.72 | 370.88 | 370.58 |
0.05 | 352.95 | 357.90 | 339.63 | 338.85 | 336.50 | 323.59 | 320.04 |
0.1 | 303.51 | 322.36 | 274.00 | 272.27 | 264.04 | 237.71 | 235.81 |
0.2 | 194.77 | 219.37 | 143.22 | 141.34 | 139.39 | 117.38 | 116.21 |
0.3 | 114.94 | 143.31 | 78.65 | 76.22 | 78.59 | 63.32 | 61.19 |
0.5 | 44.65 | 59.71 | 29.16 | 27.78 | 34.16 | 26.25 | 24.22 |
1 | 9.86 | 14.18 | 6.66 | 6.41 | 11.29 | 8.33 | 7.65 |
1.5 | 4.08 | 6.56 | 2.91 | 2.83 | 6.33 | 4.44 | 3.41 |
2 | 2.29 | 3.87 | 1.43 | 1.21 | 4.20 | 2.78 | 2.05 |
3 | 1.17 | 1.78 | 0.42 | 0.41 | 2.28 | 1.35 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talordphop, K.; Areepong, Y.; Sukparungsee, S. Enhancing Sensitivity of Nonparametric Tukey Extended EWMA-MA Charts for Effective Process Mean Monitoring. Symmetry 2025, 17, 1457. https://doi.org/10.3390/sym17091457
Talordphop K, Areepong Y, Sukparungsee S. Enhancing Sensitivity of Nonparametric Tukey Extended EWMA-MA Charts for Effective Process Mean Monitoring. Symmetry. 2025; 17(9):1457. https://doi.org/10.3390/sym17091457
Chicago/Turabian StyleTalordphop, Khanittha, Yupaporn Areepong, and Saowanit Sukparungsee. 2025. "Enhancing Sensitivity of Nonparametric Tukey Extended EWMA-MA Charts for Effective Process Mean Monitoring" Symmetry 17, no. 9: 1457. https://doi.org/10.3390/sym17091457
APA StyleTalordphop, K., Areepong, Y., & Sukparungsee, S. (2025). Enhancing Sensitivity of Nonparametric Tukey Extended EWMA-MA Charts for Effective Process Mean Monitoring. Symmetry, 17(9), 1457. https://doi.org/10.3390/sym17091457