A Bonferroni Mean Operator for p,q-Rung Triangular Orthopair Fuzzy Environments and Its Application in COPRAS Method
Abstract
1. Introduction
2. Literature Review
3. Preliminaries
4. The p,q-Rung Triangular Orthopair Fuzzy Number
- 1.
- If , then ,
- 2.
- If , then
- (1)
- If , then ,
- (2)
- If , then .
4.1. Operational Method of p,q-RTOFNs
4.2. Distance Measure
- : As , it implies , and . The equality means . Moreover, as and , they imply and .
- Similarly, it can be deduced that and . Then is proven. is easy to prove.
- As , , and , they imply .
- As , and , they imply . □
4.3. Weight Power Bonferroni Mean Operator of p,q-RTOFNs
- (1)
- ;
- (2)
- ;
- (3)
- If , then .
4.4. Calculation of Entropy Weights Under p,q-RTOF Environment
- The formula to calculate the characteristic weight of an element in set is
- The entropy value of set is
- The entropy weight of set is
- : Consider the following function:
5. The p,q-RTOF-PBM-COPRAS Method
Algorithm 1 Iterate optimal weight vector |
|
6. Case Analysis
6.1. Background
6.2. Experimental Procedures
6.3. Parameter Analysis
6.4. Comparative Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Set of all nonzero natural numbers . | |
Set of all real numbers. | |
Set of non-negative real numbers. | |
Membership degree. | |
Non-membership degree. | |
IFS | Intuitionistic fuzzy set. |
q-ROFS | q-rung orthopair fuzzy set. |
p,q-ROFS | p,q-rung orthopair fuzzy set. |
TFN | Triangular fuzzy number. |
p,q-RTOFN | p,q-rung triangular orthopair fuzzy number. |
Power Bonferroni mean. | |
p,q-RTOFPBM | p,q-rung triangular orthopair fuzzy power Bonferroni mean. |
p,q-RTOFWPBM | p,q-rung triangular orthopair fuzzy weight power Bonferroni mean. |
T-SF | T-spherical fuzzy. |
PFN | Pythagorean fuzzy number. |
IVIFS | Interval-valued intuitionistic fuzzy set. |
IVHFFS | Interval-valued hesitant fermatean fuzzy set. |
IVpqr-SFN | Interval-valued (p,q,r)-spherical fuzzy number. |
IT2TrFS | Interval type-2 trapezoidal fuzzy set. |
SFS | p,q,r-spherical fuzzy set. |
TOPSIS | Technique for order preference by similarity to ideal solution. |
AHP | Analytic hierarchy process. |
EWM | Entropy weight method. |
COPRAS | Complex proportional assessment |
SWARA | Step-wise weight assessment ratio analysis. |
FUCOM | Full consistency method. |
MEREC | Method based on the removal effects of criteria |
References
- Alcantud, J.C.R.; Stojanović, N.; Djurović, L.; Laković, M. Decision-Making and Clustering Algorithms Based on the Scored-Energy of Hesitant Fuzzy Soft Sets. Int. J. Fuzzy Syst. 2025. [Google Scholar] [CrossRef]
- Mudric-Staniskovski, L.; Djurovic, L.; Stojanovic, N. Energy of a fuzzy soft set and its application in decision-making. Iran. J. Fuzzy Syst. 2024, 21, 35–49. [Google Scholar] [CrossRef]
- Sandhya, P.B.; Prashanta, K.P.; Diptirekha, S. Fuzzy TOPSIS technique for multi-criteria group decision-making: A study of crude oil price. Results Control Optim. 2025, 19, 100565. [Google Scholar] [CrossRef]
- Sepehr, H.; Ali, E.T.; Sandra, V.; Grit, W. Leading the green charge: A novel type-2 fuzzy VIKOR method applied to eco-conscious freight transport. Expert Syst. Appl. 2025, 285, 128082. [Google Scholar] [CrossRef]
- Aslihan, S.; Melisa, C.D.; Alev, T. Assessing collaboration performance of NGOs by a decomposed Fuzzy approach utilizing AHP and COPRAS methods: Turkiye case. Int. J. Disaster Risk Reduct. 2024, 111, 104744. [Google Scholar] [CrossRef]
- Rohit, K.; Raj, K.; Kovács, A.; Gusztáv, F.; Tej, S. Thermo-hydraulic characterization and design optimization of delta-shaped obstacles in solar water heating system using CRITIC-COPRAS approach. Energy 2022, 261, 125236. [Google Scholar] [CrossRef]
- Muhammad, A.; Kiran, Z.; Muhammet, D. Multi-criteria group decision-making for optimal management of water supply with fuzzy ELECTRE-based outranking method. Appl. Soft Comput. 2023, 143, 110403. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Naeem, J.; Jeonghwan, G.; Dragan, P.; Luis, M. Hybrid integrated decision-making model for operating system based on complex intuitionistic fuzzy and soft information. Inf. Sci. 2023, 651, 119592. [Google Scholar] [CrossRef]
- Yunus, E.S. Assessment of human factor contribution to risk analysis of chemical cargo shortage incidents by using intuitionistic fuzzy integrated fault tree analysis. Ocean. Eng. 2024, 301, 117559. [Google Scholar] [CrossRef]
- Cheng, X.; Cheng, C.; Wang, S. Group decision making with incomplete triangular fuzzy multiplicative preference relations for evaluating third-party reverse logistics providers. Appl. Soft Comput. 2024, 160, 111688. [Google Scholar] [CrossRef]
- Dong, J.; Wan, S.; Chen, S.-M. Fuzzy best-worst method based on triangular fuzzy numbers for multi-criteria decision-making. Inf. Sci. 2021, 547, 1080–1104. [Google Scholar] [CrossRef]
- Zhang, D.; Hu, J. A novel multi-interval-valued fuzzy set model to solve MADM problems. Expert Syst. Appl. 2024, 238, 122248. [Google Scholar] [CrossRef]
- Manisha, M.; Gupta, S.K. On basic arithmetic operations for interval-valued intuitionistic fuzzy sets using the Hamming distance with their application in decision making. Expert Syst. Appl. 2024, 239, 122429. [Google Scholar] [CrossRef]
- Ronald, R.Y.; Naif, A. Approximate reasoning with generalized orthopair fuzzy sets. Inf. Fusion 2017, 38, 65–73. [Google Scholar] [CrossRef]
- Mijanur, R.S.; Utpal, M. Multiple attribute group decision making based on quasirung orthopair fuzzy sets: Application to electric vehicle charging station site selection problem. Eng. Appl. Artif. Intell. 2022, 115, 105299. [Google Scholar] [CrossRef]
- Senapati, T.; Yager, R.R. Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods. Eng. Appl. Artif. Intell. 2019, 85, 112–121. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. Dell’Unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Yager, R.R. The power average operator. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2001, 31, 724–731. [Google Scholar] [CrossRef]
- Xu, Z.; Yager, R.R. Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 2006, 35, 417–433. [Google Scholar] [CrossRef]
- Zhou, X.H.; Yao, J. Triangular fuzzy number intuitionistic fuzzy power averaging operator and its application. Acta Anal. Funct. Appl. 2014, 16, 308–314. [Google Scholar]
- Liu, P.; Liu, J.; Chen, S.-M. Some intuitionistic fuzzy Dombi Bonferroni mean operators and their application to multi-attribute group decision making. J. Oper. Res. Soc. 2018, 69, 1–24. [Google Scholar] [CrossRef]
- Zhu, B.; Xu, Z.S. Hesitant fuzzy Bonferroni means for multi-criteria decision making. J. Oper. Res. Soc. 2013, 64, 1831–1840. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Kaklauskas, A.; Sarka, V. The new method of multicriteria complex proportional assessment of projects. Technol. Econ. Dev. Econ. 1994, 1, 131–139. [Google Scholar]
- Zheng, Y.H.; Xu, Z.S.; He, Y.; Liao, H.C. Severity assessment of chronic obstructive pulmonary disease based on hesitant fuzzy linguistic COPRAS method. Appl. Soft Comput. 2018, 69, 60–71. [Google Scholar] [CrossRef]
- Arunodaya, R.M.; Pratibha, R.; Abbas, M.; Kamal, R.P.; Kannan, G.; Melfi, A. Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. Comput. Ind. Eng. 2020, 139, 106140. [Google Scholar] [CrossRef]
- Krassimir, T.A. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Buckley, J.J. Possibilistic linear programming with triangular fuzzy numbers. Fuzzy Sets Syst. 1988, 26, 135–138. [Google Scholar] [CrossRef]
- Pamučar, D.; Stević, Ž.; Sremac, S. A New Model for Determining Weight Coefficients of Criteria in MCDM Models: Full Consistency Method (FUCOM). Symmetry 2018, 10, 393. [Google Scholar] [CrossRef]
- Chen, Y.-T. An integrated MEREC-taxonomy methodology using T-spherical fuzzy information: An application in smart farming decision analytics. Adv. Eng. Inform. 2024, 62, 102891. [Google Scholar] [CrossRef]
- Christoforidou, M.; Borghuis, G.; Seijger, C. Food security under water scarcity: A comparative analysis of Egypt and Jordan. Food Sec. 2023, 15, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Boursianis, A.D.; Papadopoulou, M.S.; Panagiotis, D.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Shon, D.; Lee, E.; Lee, Y.; Lee, J.; Byun, N. Characteristics of Smart Farms for Architectural Planning and Design. Buildings 2023, 13, 93. [Google Scholar] [CrossRef]
- Bhavna, P.; Manoj, K.K. An integrated Pythagorean fuzzy SWARA-COPRAS framework to prioritise the solutions for mitigating Industry 4.0 risks. Expert Syst. Appl. 2024, 254, 124412. [Google Scholar] [CrossRef]
- Arunodaya, R.M.; Peide, L.; Pratibha, R. COPRAS method based on interval-valued hesitant Fermatean fuzzy sets and its application in selecting desalination technology. Appl. Soft Comput. 2022, 119, 108570. [Google Scholar] [CrossRef]
- Faruk, K.; Fatih, K. Interval-valued (p,q,r)-spherical fuzzy sets and their applications in MCGDM and MCDM based on TOPSIS method and aggregation operators. Expert Syst. Appl. 2024, 255, 124575. [Google Scholar] [CrossRef]
- Li, H.; Yao, X.; Lu, J. Optimal investment decision-making of energy storage technologies on renewable energy generation side based on the Internal Type-2 trapezoidal fuzzy sets-PROMETHEE-II method. Int. J. Electr. Power Energy Syst. 2025, 170, 110861. [Google Scholar] [CrossRef]
- Ameen, Z.A.; Salih, H.F.M.; Alajlan, A.I.; Mohammed, R.A.; Asaad, B.A. Enhanced MCDM Based on the TOPSIS Technique and Aggregation Operators Under the Bipolar pqr-Spherical Fuzzy Environment: An Application in Firm Supplier Selection. Appl. Sci. 2025, 15, 3597. [Google Scholar] [CrossRef]
Linguistic Terms | Related p,q-RTOFNs |
---|---|
Absolutely High (AH) | |
Very High (VH) | |
High (H) | |
Medium High (MH) | |
Average (A) | |
Medium Low (ML) | |
Low (L) | |
Very Low (VL) | |
Absolutely Low (AL) |
L | H | MH | MH | A | H | AH | |
H | A | VH | H | AL | A | H | |
A | VL | L | AL | L | MH | ML | |
ML | ML | A | A | A | A | A | |
AL | H | H | AH | MH | AH | VH | |
L | MH | MH | L | H | VH | L | |
MH | L | ML | VL | A | L | VL |
7.3066 | 6.7992 | 8.4901 | 5.2383 | 6.723 | 4.9256 | 4.517 | |
0.8606 | 0.8008 | 1 | 0.617 | 0.7919 | 0.5802 | 0.532 | |
Rank |
Rank | ||||||||
---|---|---|---|---|---|---|---|---|
0.8606 | 0.8008 | 1 | 0.617 | 0.7919 | 0.5802 | 0.532 | ||
0.8763 | 0.8226 | 1 | 0.6474 | 0.7983 | 0.6083 | 0.5613 | ||
0.8703 | 0.831 | 1 | 0.6750 | 0.7782 | 0.6338 | 0.5839 | ||
0.86 | 0.8323 | 1 | 0.684 | 0.7562 | 0.6418 | 0.591 | ||
0.8454 | 0.8342 | 1 | 0.6862 | 0.7264 | 0.6422 | 0.5948 | ||
0.8221 | 0.8327 | 1 | 0.6802 | 0.7056 | 0.6327 | 0.5887 | ||
0.8145 | 0.8323 | 1 | 0.6776 | 0.6963 | 0.6281 | 0.5861 |
Rank | ||||||||
---|---|---|---|---|---|---|---|---|
0.8606 | 0.8008 | 1 | 0.617 | 0.7919 | 0.5802 | 0.532 | ||
0.9076 | 0.8329 | 1 | 0.6808 | 0.8573 | 0.6522 | 0.5896 | ||
0.9439 | 0.8595 | 1 | 0.7198 | 0.9008 | 0.6972 | 0.6270 | ||
0.9824 | 0.8892 | 1 | 0.7529 | 0.9423 | 0.7335 | 0.6593 | ||
0.9946 | 0.8966 | 1 | 0.7612 | 0.9565 | 0.7416 | 0.6664 | ||
0.9968 | 0.8956 | 1 | 0.7616 | 0.9607 | 0.7417 | 0.6660 | ||
0.9968 | 0.8956 | 1 | 0.7616 | 0.9607 | 0.7417 | 0.6660 |
Rank | ||||||||
---|---|---|---|---|---|---|---|---|
0.9619 | 0.9716 | 1 | 0.8943 | 0.9231 | 0.8733 | 0.8498 | ||
0.9439 | 0.9503 | 1 | 0.8427 | 0.8936 | 0.8166 | 0.7907 | ||
0.8606 | 0.8008 | 1 | 0.6170 | 0.7919 | 0.5802 | 0.5320 | ||
0.8433 | 0.7041 | 1 | 0.5445 | 0.8086 | 0.5356 | 0.5296 | ||
0.7723 | 0.541 | 1 | 0.3789 | 0.7612 | 0.3918 | 0.3961 |
Rank | ||||||||
---|---|---|---|---|---|---|---|---|
0.2213 | 0.2432 | 1 | 0.3168 | 0.1657 | 0.2928 | 0.4887 | ||
0.2772 | 0.2920 | 1 | 0.3431 | 0.2205 | 0.3180 | 0.4925 | ||
0.3409 | 0.3475 | 1 | 0.3730 | 0.2829 | 0.3466 | 0.4968 | ||
0.4140 | 0.4113 | 1 | 0.4073 | 0.3545 | 0.3794 | 0.5017 | ||
0.4988 | 0.4853 | 1 | 0.4471 | 0.4375 | 0.4176 | 0.5075 | ||
0.5984 | 0.5721 | 1 | 0.4939 | 0.5351 | 0.4623 | 0.5143 | ||
0.7170 | 0.6756 | 1 | 0.5496 | 0.6512 | 0.5156 | 0.5223 | ||
0.8606 | 0.8008 | 1 | 0.6170 | 0.7919 | 0.5802 | 0.5320 | ||
1 | 0.9206 | 0.9633 | 0.6746 | 0.9302 | 0.6357 | 0.5241 | ||
1 | 0.9119 | 0.7917 | 0.6381 | 0.9390 | 0.6025 | 0.4428 | ||
1 | 0.9044 | 0.6421 | 0.6062 | 0.9466 | 0.5736 | 0.3720 |
Characteristics | Method Type | ||||||
---|---|---|---|---|---|---|---|
Chen et al. [30] | Pandey et al. [34] | Mishra et al. [35] | Karaaslan et al. [36] | Li et al. [37] | Ameen et al. [38] | Proposed Method | |
Decision information | T-SFNs | PFNs | IVHFFSs | IVpqr-SFNs | IT2TrFSs | SFSs | p,q-RTOFNs |
Methodology framework | Taxonomy | COPRAS | COPRAS | TOPSIS | PROMETHEE | TOPSIS | COPRAS |
Mathematical measure | Similarity and Closeness | Positive score and Negative loss | Positive score and Negative loss | Distance measure | Preference Measure | Distance measure | p,q-RTOFWPBM operator and Proportional Aggregation |
Weighting method | MEREC | SWARA | Discrimination weight method | Score weighting method | AHP and EWM | Directly from decision makers | FUCOM and EWM |
Weigh type | Objective weight | Subjective weight | Objective weight | Subjective weight | Combination weight | Subjective weight | Combination weight |
Ranking | |||||||
Best model |
Characteristics | Fuzzy Numbers | ||||||
---|---|---|---|---|---|---|---|
T-SFN | PFN | IVHFFN | IVpqr-SFN | IT2TrFN | SFN | p,q-RTOFN | |
High-order fuzzy ability | General | None | Strong | General | Strong | Strong | Strong |
Flexibility and adjustability | Medium | Low | High | High | Low | High | High |
Resistance to information loss | Medium | Weak | Strong | Strong | Strong | Strong | Strong |
Expressive ability | General | General | Strong | General | Strong | Strong | Strong |
Language approximation ability | Medium | Low | High | High | High | Medium | High |
Structural scalability | Low | Extremely High | Low | High | Low | General | High |
Computational complexity | Medium | Low | High | High | Extremely High | High | Medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, S.; Kong, X. A Bonferroni Mean Operator for p,q-Rung Triangular Orthopair Fuzzy Environments and Its Application in COPRAS Method. Symmetry 2025, 17, 1422. https://doi.org/10.3390/sym17091422
Qu S, Kong X. A Bonferroni Mean Operator for p,q-Rung Triangular Orthopair Fuzzy Environments and Its Application in COPRAS Method. Symmetry. 2025; 17(9):1422. https://doi.org/10.3390/sym17091422
Chicago/Turabian StyleQu, Shenjie, and Xiangzhi Kong. 2025. "A Bonferroni Mean Operator for p,q-Rung Triangular Orthopair Fuzzy Environments and Its Application in COPRAS Method" Symmetry 17, no. 9: 1422. https://doi.org/10.3390/sym17091422
APA StyleQu, S., & Kong, X. (2025). A Bonferroni Mean Operator for p,q-Rung Triangular Orthopair Fuzzy Environments and Its Application in COPRAS Method. Symmetry, 17(9), 1422. https://doi.org/10.3390/sym17091422