A Symmetry-Driven Hybrid Framework Integrating ITTAO and sLSTM-Attention for Air Quality Prediction
Abstract
1. Introduction
- In order to enhance the optimization ability of the TTAO, this paper introduces Random Walk Strategy Using Lévy Flight, Differential Evolution Strategy, and Dimensional Pinhole Imaging Inverse Learning Strategy at different stages of the algorithm. Extensive experiments on the CEC2017 standard test function set demonstrate that the ITTAO algorithm exhibits superior convergence accuracy and global search capability compared to other classic optimization algorithms.
- To improve the accuracy of the sLSTM model in sustainable air quality prediction, this paper incorporates the attention mechanism into the sLSTM model, resulting in the creation of the sLSTM-Attention hybrid model. The learning rate and dropout rate of the model are optimized using the ITTAO algorithm, leading to the development of the ITTAO-sLSTM-Attention model. This model is then compared with various swarm intelligence-optimized sLSTM-Attention models and other classic machine learning models across four cities. The results indicate that the ITTAO-sLSTM-Attention model exhibits superior predictive accuracy and generalization performance.
- To bridge the gap between theory and practice for the ITTAO-sLSTM-Attention model, this paper presents an interactive prediction system developed using PyQt. The system features an intuitive user interface and integrates functional modules such as model training, hyperparameter settings, data prediction, and result visualization. It aims to provide users with a more convenient and efficient tool for sustainable air quality prediction.
2. Methodology
2.1. Triangulation Topology Aggregation Optimizer
- (1)
- Initialization
- (2)
- Formation of Triangular Topological Units
- (3)
- Generic Aggregation
- (4)
- Local Aggregation
2.2. Improved Triangulation Topology Aggregation Optimizer
2.2.1. Random Walk Strategy Using Lévy Flight
2.2.2. Differential Evolution Strategy
2.2.3. Dimensional Pinhole Imaging Inverse Learning Strategy
2.3. sLSTM-Attention Model
Algorithm 1 Improved triangulation topology aggregation optimizer |
Require: Population size N, maximum number of iterations T, dimension of variables D. Ensure: The optimal position and its fitness value . Initialize each TTU point . while do Update each TTU point according to Equations (2), (3) and (10), and perform boundary checks. for to do Calculate the fitness values of each agent, sort the vertexes in each group of TTUs according to the fitness values, and record and . end for for to do Update the agent position using Equation (15), and update and using Equation (6). end for for to do Update the agent position using Equation (7), and update using Equation (9). end for for to do Update the agent positions using Equation (17). end for Calculate the fitness value of and the fitness values of remaining agents, and sort the positions according to the fitness values. Update using the top search agents based on their fitness values. end while return and |
2.3.1. sLSTM Model
2.3.2. Multi-Head Attention Mechanism
2.4. ITTAO-sLSTM-Attention Model
- Data preparation: This includes generating the training and testing sets, data preprocessing, and data standardization.
- Model construction: The sLSTM-Attention model proposed in this paper is constructed.
- Hyperparameter optimization: The learning rate and dropout rate of the sLSTM-Attention model are optimized using the ITTAO algorithm. This process includes the initialization of the ITTAO algorithm, the calculation of fitness values based on RMSE as the evaluation metric, and the updating of optimization variables according to the fitness values, ultimately returning the optimal model parameter configuration. The detailed algorithm update process is shown in Algorithm 1.
- Model training: Based on the optimal hyperparameters obtained from ITTAO optimization, these parameters are used to train the sLSTM-Attention model.
- Prediction results and error evaluation: Based on the trained model, prediction results are obtained and errors are calculated.
2.5. Evaluation Metrics
3. Experimental Results and Discussion
3.1. Performance Analysis of the ITTAO Algorithm
3.1.1. Test Functions and Basic Configurations
3.1.2. Analysis of Statistical Results
3.1.3. Wilcoxon Test
3.2. Air Quality Prediction Using ITTAO-sLSTM-Attention
3.2.1. Data Source and Preprocessing
3.2.2. Comparison of AQI Prediction Results of sLSTM-Attention Optimized by ITTAO and Benchmark Algorithms
3.2.3. Comparison of Air Quality Prediction Results Between the ITTAO-sLSTM-Attention Model and Benchmark Machine Learning Models
3.2.4. ITTAO-sLSTM-Attention-Based Air Quality Prediction System
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dong, J.; Zhang, Y.; Hu, J. Short-term air quality prediction based on EMD-transformer-BiLSTM. Sci. Rep. 2024, 14, 20513. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Hu, R.; Chen, H. A novel hybrid model for air quality prediction via dimension reduction and error correction techniques. Environ. Monit. Assess. 2025, 197, 96. [Google Scholar] [CrossRef]
- Liu, T.; You, S. Analysis and forecast of Beijing’s air quality index based on ARIMA model and neural network model. Atmosphere 2022, 13, 512. [Google Scholar] [CrossRef]
- Ali, U.; Bano, S.; Shamsi, M.H.; Sood, D.; Hoare, C.; Zuo, W.; Hewitt, N.; O’Donnell, J. Urban building energy performance prediction and retrofit analysis using data-driven machine learning approach. Energy Build. 2024, 303, 113768. [Google Scholar] [CrossRef]
- Pant, A.; Joshi, R.C.; Sharma, S.; Pant, K. Predictive modeling for forecasting air quality index (AQI) using time series analysis. Avicenna J. Environ. Health Eng. 2023, 10, 38–43. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, Y.; Jiang, W. Geographically Aware Air Quality Prediction Through CNN-LSTM-KAN Hybrid Modeling with Climatic and Topographic Differentiation. Atmosphere 2025, 16, 513. [Google Scholar] [CrossRef]
- Ahmed, M.; Zhang, X.; Shen, Y.; Ahmed, T.; Ali, S.; Ali, A.; Gulakhmadov, A.; Nam, W.-H.; Chen, N. Low-cost video-based air quality estimation system using structured deep learning with selective state space modeling. Environ. Int. 2025, 199, 109496. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Zou, J.; Xu, M.; Xi, M.; Zhou, Z. Air quality prediction for Chengdu based on long short-term memory neural network with improved jellyfish search optimizer. Environ. Sci. Pollut. Res. 2023, 30, 64416–64442. [Google Scholar] [CrossRef]
- Liaw, J.-J.; Chen, K.-Y. Using high-frequency information and RH to estimate AQI based on SVR. Sensors 2021, 21, 3630. [Google Scholar] [CrossRef]
- Ketu, S. Spatial air quality index and air pollutant concentration prediction using linear regression based recursive feature elimination with random forest regression (RFERF): A case study in India. Nat. Hazards 2022, 114, 2109–2138. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, T. Air quality predictive modeling based on an improved decision tree in a weather-smart grid. IEEE Access 2019, 7, 172892–172901. [Google Scholar] [CrossRef]
- Jin, X.-B.; Wang, Z.-Y.; Gong, W.-T.; Kong, J.-L.; Bai, Y.-T.; Su, T.-L.; Ma, H.-J.; Chakrabarti, P. Variational Bayesian network with information interpretability filtering for air quality forecasting. Mathematics 2023, 11, 837. [Google Scholar] [CrossRef]
- Ma, J.; Yu, Z.; Qu, Y.; Xu, J.; Cao, Y. Application of the XGBoost machine learning method in PM2.5 prediction: A case study of Shanghai. Aerosol Air Qual. Res. 2020, 20, 128–138. [Google Scholar] [CrossRef]
- Zhang, H.; Srinivasan, R.; Yang, X. Simulation and analysis of indoor air quality in Florida using time series regression (TSR) and artificial neural networks (ANN) models. Symmetry 2021, 13, 952. [Google Scholar] [CrossRef]
- Huang, W.; Li, T.; Liu, J.; Xie, P.; Du, S.; Teng, F. An overview of air quality analysis by big data techniques: Monitoring, forecasting, and traceability. Inf. Fusion 2021, 75, 28–40. [Google Scholar] [CrossRef]
- Seng, D.; Zhang, Q.; Zhang, X.; Chen, G.; Chen, X. Spatiotemporal prediction of air quality based on LSTM neural network. Alex. Eng. J. 2021, 60, 2. [Google Scholar] [CrossRef]
- Jiao, Y.; Wang, Z.; Zhang, Y. Prediction of air quality index based on LSTM. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 17–20. [Google Scholar]
- Li, Y.; Jiang, T.; Gu, H.; Lu, W.; Wu, Q.; Yu, Y. Air Quality Index Prediction Based on CNN-LSTM-Attention Hybrid Modeling. In Proceedings of the 2023 International Conference on the Cognitive Computing and Complex Data (ICCD), Huaian, China, 21–22 October 2023; pp. 175–180. [Google Scholar]
- Gilik, A.; Ogrenci, A.S.; Ozmen, A. Air quality prediction using CNN+LSTM-based hybrid deep learning architecture. Environ. Sci. Pollut. Res. 2022, 29, 11920–11938. [Google Scholar] [CrossRef]
- Guo, Z.; Jing, X.; Ling, Y.; Yang, Y.; Jing, N.; Yuan, R.; Liu, Y. Optimized air quality management based on air quality index prediction and air pollutants identification in representative cities in China. Sci. Rep. 2024, 14, 17923. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, D.; Xue, R. Hourly prediction of PM 2.5 concentration in Beijing based on Bi-LSTM neural network. Multimed. Tools Appl. 2021, 80, 24455–24468. [Google Scholar] [CrossRef]
- Hossain Sani, S.; Shopon, M.; Hossain Khan, M.; Hasan, M.; Mridha, M.F. Short-term and Long-term Air Quality Forecasting Technique Using Stacked LSTM. In Proceedings of the 6th International Conference on Communication and Information Processing, Tokyo, Japan, 27–29 November 2020; pp. 165–171. [Google Scholar]
- Kafi, F.; Yousefi, E.; Ehteram, M.; Ashrafi, K. Stabilized Long Short Term Memory (SLSTM) model: A new variant of the LSTM model for predicting ozone concentration data. Earth Sci. Inform. 2025, 18, 311. [Google Scholar] [CrossRef]
- Dong, X.; Li, D.; Wang, W.; Shen, Y. BWO-CAformer: An improved Informer model for AQI prediction in Beijing and Wuhan. Process Saf. Environ. Prot. 2025, 195, 106800. [Google Scholar] [CrossRef]
- Zhu, X.; Zou, F.; Li, S. Enhancing Air Quality Prediction with an Adaptive PSO-Optimized CNN-Bi-LSTM Model. Appl. Sci. 2024, 14, 5787. [Google Scholar] [CrossRef]
- Zhao, X.; Li, C.; Zou, X.; Du, X.; Ismail, A. Passenger Flow Prediction for Rail Transit Stations Based on an Improved SSA-LSTM Model. Mathematics 2024, 12, 3556. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, R.; Yu, B.; Liao, B.; Song, F.; Tang, C. An Improved Chaotic Game Optimization Algorithm and Its Application in Air Quality Prediction. Axioms 2025, 14, 235. [Google Scholar] [CrossRef]
- Aarthi, C.; Ramya, V.J.; Falkowski-Gilski, P.; Divakarachari, P.B. Balanced Spider Monkey Optimization with Bi-LSTM for Sustainable Air Quality Prediction. Sustainability 2023, 15, 1637. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, T.; Cai, L.; Yang, R. Triangulation topology aggregation optimizer: A novel mathematics-based meta-heuristic algorithm for continuous optimization and engineering applications. Expert Syst. Appl. 2024, 238, 121744. [Google Scholar] [CrossRef]
- Che, Z.; Peng, C.; Yue, C. Optimizing LSTM with multi-strategy improved WOA for robust prediction of high-speed machine tests data. Chaos Solitons Fractals 2024, 178, 114394. [Google Scholar] [CrossRef]
- Zeng, N.; Song, D.; Li, H.; You, Y.; Liu, Y.; Alsaadi, F.E. A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution. Neurocomputing 2021, 432, 170–182. [Google Scholar] [CrossRef]
- Liu, Z.; Li, X.; Lu, Z.; Meng, X. IWOA-RNN: An improved whale optimization algorithm with recurrent neural networks for traffic flow prediction. Alex. Eng. J. 2025, 117, 563–576. [Google Scholar] [CrossRef]
- Beck, M.; Pöppel, K.; Spanring, M.; Auer, A.; Prudnikova, O.; Kopp, M.; Klambauer, G.; Brandstetter, J.; Hochreiter, S. XLSTM: Extended long short-term memory. arXiv 2024, arXiv:2405.04517. [Google Scholar]
- Kumar, A.; Narapareddy, V.T.; Srikanth, V.A.; Malapati, A.; Neti, L.B.M. Sarcasm detection using multi-head attention based bidirectional LSTM. IEEE Access 2020, 8, 6388–6397. [Google Scholar] [CrossRef]
- Wei, Y.; Liu, H. Convolutional long-short term memory network with multi-head attention mechanism for traffic flow prediction. Sensors 2022, 22, 7994. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Sharma, S.; Saha, A.K.; Saha, A. A novel improved whale optimization algorithm to solve numerical optimization and real-world applications. Artif. Intell. Rev. 2022, 55, 4605–4716. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [Google Scholar]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper optimisation algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Rao, R.V. Teaching-Learning-Based Optimization Algorithm; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179, 2232–2248. [Google Scholar] [CrossRef]
- Elmogy, A.; Miqrish, H.; Elawady, W.; El-Ghaish, H. ANWOA: An adaptive nonlinear whale optimization algorithm for high-dimensional optimization problems. Neural Comput. Appl. 2023, 35, 22671–22686. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, G.; Yang, L.; Liu, T.; Sun, J.; Cai, S. Research on ship replenishment path planning based on the modified whale optimization algorithm. Biomimetics 2025, 10, 179. [Google Scholar] [CrossRef]
- Wang, H.; Tang, J.; Pan, Q. MSI-HHO: Multi-strategy improved HHO algorithm for global optimization. Mathematics 2024, 12, 415. [Google Scholar] [CrossRef]
- Revathi, A.R.; Arockia, A.A. An Overview of Predictive Analysis for Air Quality Measurements and Visualization. In Proceedings of the 2024 International Conference on Computing and Data Science (ICCDS), Chennai, India, 26–27 April 2024; pp. 1–6. [Google Scholar]
- Wang, X.; Yan, J.; Wang, X.; Wang, Y. Air quality forecasting using the GRU model based on multiple sensors nodes. IEEE Sens. Lett. 2023, 7, 1–4. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, K.; He, Y.; Wang, P.; Chen, Y.; Xue, H.; Huang, C.; Li, L. Enhancing air quality forecasting: A novel spatio-temporal model integrating graph convolution and multi-head attention mechanism. Atmosphere 2024, 15, 418. [Google Scholar] [CrossRef]
- Zhou, H.; Yan, Y. Research on a hybrid deep learning model based on two-stage decomposition and an improved whale optimization algorithm for air quality index prediction. Eng. Appl. Comput. Fluid Mech. 2025, 19, 2507753. [Google Scholar] [CrossRef]
Name | Parameters | Values |
---|---|---|
PSO | 0.9 to 0.4, 2, 2 | |
WOA | 1, [0, 2], [−1, 1] | |
GOA | 1.5, 0.5, [0, 1] | |
SSA | 0.2, 0.1 | |
TLBO | 1 or 2 | |
GSA | , | 100, 20 |
TTAO | [0, 1] |
PSO | WOA | GOA | SSA | TLBO | GSA | TTAO | |
---|---|---|---|---|---|---|---|
F1 | |||||||
F3 | |||||||
F4 | |||||||
F5 | |||||||
F6 | |||||||
F7 | |||||||
F8 | |||||||
F9 | |||||||
F10 | |||||||
F11 | |||||||
F12 | |||||||
F13 | |||||||
F14 | |||||||
F15 | |||||||
F16 | |||||||
F17 | |||||||
F18 | |||||||
F19 | |||||||
F20 | |||||||
F21 | |||||||
F22 | |||||||
F23 | |||||||
F24 | |||||||
F25 | |||||||
F26 | |||||||
F27 | |||||||
F28 | |||||||
F29 | |||||||
F30 |
Type | Symbol | Unit | Chengdu | Beijing | Nanjing | Xi’an | ||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Min | Max | Min | Max | Min | Max | Min | |||
Input | PM2.5 | μg/m3 | 188 | 3 | 208 | 1 | 134 | 3 | 294 | 4 |
PM10 | μg/m3 | 399 | 5 | 1563 | 4 | 502 | 6 | 1116 | 8 | |
NO2 | μg/m3 | 13 | 1 | 13 | 1 | 16 | 2 | 27 | 2 | |
CO | μg/m3 | 1.55 | 0.26 | 2.33 | 0.07 | 1.61 | 0.28 | 2.12 | 0.25 | |
SO2 | μg/m3 | 92 | 5 | 88 | 1 | 106 | 5 | 93 | 6 | |
O3 | μg/m3 | 144 | 3 | 200 | 2 | 178 | 4 | 152 | 4 | |
Output | AQI | \ | 278 | 11 | 471 | 11 | 282 | 11 | 464 | 1 |
City | Metric | ITTAO-sLSTM-Attention | TTAO-sLSTM-Attention | TLBO-sLSTM-Attention | GSA-sLSTM-Attention | PSO-sLSTM-Attention | WOA-sLSTM-Attention | GOA-sLSTM-Attention | SSA-sLSTM-Attention |
---|---|---|---|---|---|---|---|---|---|
Chengdu | RMSE | 9.6691 | 10.1826 | 9.7684 | 9.9987 | 10.6061 | 10.0472 | 12.0738 | 9.934 |
MAE | 6.1955 | 6.8860 | 6.5147 | 6.7967 | 7.5487 | 6.8215 | 9.5128 | 6.3692 | |
MAPE | 12.62% | 14.09% | 13.05% | 13.77% | 14.60% | 15.20% | 22.58% | 13.31% | |
Beijing | RMSE | 9.2070 | 9.8521 | 10.2551 | 9.6399 | 9.6254 | 9.4654 | 10.5076 | 9.9666 |
MAE | 6.7044 | 7.5505 | 7.9742 | 7.3157 | 7.1823 | 7.4095 | 8.0599 | 7.5945 | |
MAPE | 14.17% | 17.08% | 18.12% | 16.65% | 15.67% | 15.46% | 20.43% | 17.01% | |
Nanjing | RMSE | 7.3518 | 8.8294 | 8.298 | 7.8076 | 7.4393 | 7.7455 | 7.9834 | 7.9767 |
MAE | 5.0078 | 7.2052 | 6.3283 | 5.804 | 4.8889 | 5.3336 | 5.536 | 5.1906 | |
MAPE | 11.21% | 17.61% | 14.94% | 13.72% | 11.75% | 12.00% | 12.65% | 11.14% | |
Xi’an | RMSE | 8.6288 | 9.493 | 9.6946 | 12.0535 | 9.3095 | 8.8342 | 10.2745 | 10.2745 |
MAE | 5.7291 | 6.7199 | 7.2448 | 9.4564 | 6.9736 | 6.0747 | 7.1876 | 7.5513 | |
MAPE | 8.46% | 10.03% | 10.92% | 14.34% | 10.47% | 9.06% | 10.93% | 11.89% |
City | Metric | ITTAO-sLSTM-Attention | sLSTM-Attention | sLSTM | LSTM | BiLSTM | CNN-LSTM | GRU |
---|---|---|---|---|---|---|---|---|
Chengdu | RMSE | 9.6691 | 10.7194 | 11.2653 | 12.6346 | 12.9266 | 10.4963 | 11.2957 |
MAE | 6.1955 | 7.1573 | 8.0308 | 8.5086 | 8.5458 | 6.9863 | 8.1390 | |
MAPE | 12.6297% | 15.4566% | 18.2234% | 18.9092% | 18.6987% | 14.9360% | 17.8583% | |
Running Time (s) | 2581.25 | 26.73 | 21.51 | 18.34 | 20.56 | 23.67 | 18.32 | |
Beijing | RMSE | 9.2070 | 9.9934 | 10.6111 | 11.7445 | 11.5034 | 11.1279 | 10.0414 |
MAE | 6.7044 | 7.6021 | 8.3294 | 9.6718 | 9.3110 | 8.8889 | 7.6968 | |
MAPE | 14.1784% | 16.7536% | 19.4207% | 23.1820% | 22.0361% | 20.5829% | 17.4201% | |
Running Time (s) | 2432.17 | 25.72 | 20.47 | 18.02 | 19.52 | 23.21 | 18.16 | |
Nanjing | RMSE | 7.3518 | 7.9808 | 9.8077 | 9.1850 | 8.0070 | 7.8015 | 8.8617 |
MAE | 5.0078 | 5.8507 | 7.4301 | 6.6148 | 5.3837 | 5.1605 | 6.4532 | |
MAPE | 11.2071% | 13.9877% | 18.9729% | 16.3209% | 12.3919% | 11.4542% | 16.0052% | |
Running Time (s) | 2723.55 | 25.67 | 20.11 | 19.72 | 23.86 | 25.41 | 20.59 | |
Xi’an | RMSE | 8.6288 | 9.2009 | 10.4861 | 11.7340 | 9.1246 | 12.2160 | 11.7522 |
MAE | 5.7291 | 6.5227 | 7.6187 | 8.5446 | 6.4056 | 9.5266 | 8.7587 | |
MAPE | 8.4626% | 9.7991% | 11.2464% | 11.9373% | 9.1916% | 13.9910% | 12.3041% | |
Running Time (s) | 2673.72 | 27.29 | 25.54 | 20.52 | 21.62 | 23.12 | 20.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, K.; Yu, B.; Liao, B.; Song, F.; Tang, C. A Symmetry-Driven Hybrid Framework Integrating ITTAO and sLSTM-Attention for Air Quality Prediction. Symmetry 2025, 17, 1369. https://doi.org/10.3390/sym17081369
Liu Y, Zhang K, Yu B, Liao B, Song F, Tang C. A Symmetry-Driven Hybrid Framework Integrating ITTAO and sLSTM-Attention for Air Quality Prediction. Symmetry. 2025; 17(8):1369. https://doi.org/10.3390/sym17081369
Chicago/Turabian StyleLiu, Yanping, Kunkun Zhang, Bohao Yu, Bin Liao, Fuhong Song, and Chunju Tang. 2025. "A Symmetry-Driven Hybrid Framework Integrating ITTAO and sLSTM-Attention for Air Quality Prediction" Symmetry 17, no. 8: 1369. https://doi.org/10.3390/sym17081369
APA StyleLiu, Y., Zhang, K., Yu, B., Liao, B., Song, F., & Tang, C. (2025). A Symmetry-Driven Hybrid Framework Integrating ITTAO and sLSTM-Attention for Air Quality Prediction. Symmetry, 17(8), 1369. https://doi.org/10.3390/sym17081369