Special Issue: Chiral Symmetry in Physics
- Selected Advances in Chiral Symmetry Research
- Summary
Acknowledgments
Conflicts of Interest
References
- Navas, S.; Amsler, C.; Gutsche, T.; Hanhart, C.; Hernández-Rey, J.J.; Lourenço, C.; Masoni, A.; Mikhasenko, M.; Mitchell, R.E.; Patrignani, C.; et al. (Particle Data Group): The Review of Particle Physics 2024. Phys. Rev. D 2024, 110, 030001. Available online: https://pdg.lbl.gov/ (accessed on 11 October 2024). [CrossRef]
- Roberts, C.D. Empirical Consequences of Emergent Mass. Symmetry 2020, 12, 1468. [Google Scholar] [CrossRef]
- Available online: https://www.mdpi.com/journal/symmetry/awards/1306 (accessed on 16 July 2025).
- Roberts, C.D.; Richards, D.G.; Horn, T.; Chang, L. Insights into the emergence of mass from studies of pion and kaon structure. Prog. Part. Nucl. Phys. 2021, 120, 103883. [Google Scholar] [CrossRef]
- Ding, M.; Roberts, C.D.; Schmidt, S.M. Emergence of Hadron Mass and Structure. Particles 2023, 6, 57–120. [Google Scholar] [CrossRef]
- Carman, D.S.; Gothe, R.W.; Mokeev, V.I.; Roberts, C.D. Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass. Particles 2023, 6, 416–439. [Google Scholar] [CrossRef]
- Raya, K.; Bashir, A.; Binosi, D.; Roberts, C.D.; Rodríguez-Quintero, J. Pseudoscalar Mesons and Emergent Mass. Few Body Syst. 2024, 65, 60. [Google Scholar] [CrossRef]
- Meißner, U.G. Two-pole structures in QCD: Facts, not fantasy! Symmetry 2020, 12, 981. [Google Scholar] [CrossRef]
- Clymton, S.; Kim, H.C. Two-pole structure of the b1(1235) axial-vector meson. Phys. Rev. D 2023, 108, 074021. [Google Scholar] [CrossRef]
- Clymton, S.; Kim, H.C. Two-pole structure of the h1(1415) axial-vector meson: Resolving the mass discrepancy. Phys. Rev. D 2024, 110, 114002. [Google Scholar] [CrossRef]
- Clymton, S.; Kim, H.C.; Mart, T. Production mechanism of hidden-charm pentaquark states Pcs with strangeness S = −1. arXiv 2025, arXiv:2504.07693. [Google Scholar] [CrossRef]
- Ablikim, M.; Achasov, M.N.; Adlarson, P.; Ai, X.C.; Aliberti, R.; Amoroso, A.; An, M.R.; An, Q.; Bai, Y.; Bakina, O.; et al. Observation of the Y(4220) and Y(4360) in the process e+e−→ηJ/ψ. Phys. Rev. D 2020, 102, 031101. [Google Scholar] [CrossRef]
- Molina, R.; Liang, W.H.; Xiao, C.W.; Sun, Z.F.; Oset, E. One or two poles for the Ξ(1820)? PoS 2025, QNP2024, 034. [Google Scholar] [CrossRef]
- Wang, J.Z.; Lin, Z.Y.; Wang, B.; Meng, L.; Zhu, S.L. Double pole structures of X1(2900) as the P-wave *K* resonances. Phys. Rev. D 2024, 110, 114003. [Google Scholar] [CrossRef]
- Zhou, Z.Y.; Xiao, Z. Two-pole structures in a relativistic Friedrichs–Lee-QPC scheme. Eur. Phys. J. C 2021, 81, 551. [Google Scholar] [CrossRef]
- Xie, J.M.; Lu, J.X.; Geng, L.S.; Zou, B.S. Two-pole structures as a universal phenomenon dictated by coupled-channel chiral dynamics. Phys. Rev. D 2023, 108, L111502. [Google Scholar] [CrossRef]
- Meißner, U.G. Chiral dynamics: Quo vadis? arXiv 2024, arXiv:2501.03014. [Google Scholar]
- Rho, M. Multifarious Roles of Hidden Chiral-Scale Symmetry: “Quenching” gA in Nuclei. Symmetry 2021, 13, 1388. [Google Scholar] [CrossRef]
- Rho, M.; Shao, L.Q. The Quenched gA in Nuclei and Infrared Fixed Point in QCD. Symmetry 2024, 16, 1704. [Google Scholar] [CrossRef]
- Rho, M. The quenched gA puzzle in nuclei and nuclear matter and “pseudo-conformality” in QCD. Mod. Phys. Lett. A 2025, 40, 2530004. [Google Scholar] [CrossRef]
- Rho, M. Connecting the Quenched gA in Nuclear Matter To Dense Compact-Star Matter. arXiv 2025, arXiv:2507.04939. [Google Scholar] [CrossRef]
- Blaschke, D.; Devyatyarov, K.A.; Kaczmarek, O. Quark cluster expansion model for interpreting finite-T lattice QCD thermodynamics. Symmetry 2021, 13, 514. [Google Scholar] [CrossRef]
- Blaschke, D.; Cierniak, M.; Ivanytskyi, O.; Röpke, G. Thermodynamics of quark matter with multiquark clusters in an effective Beth-Uhlenbeck type approach. Eur. Phys. J. A 2024, 60, 14. [Google Scholar] [CrossRef]
- Blaschke, D. Unified quark-hadron EoS and critical endpoint in the QCD phase diagram. Acta Phys. Polon. Suppl. 2021, 14, 425–433. [Google Scholar] [CrossRef]
- Fejos, G. Perturbative RG analysis of the condensate dependence of the axial anomaly in the three flavor linear sigma model. Symmetry 2021, 13, 488. [Google Scholar] [CrossRef]
- Mitter, M.; Schaefer, B.J. Fluctuations and the axial anomaly with three quark flavors. Phys. Rev. D 2014, 89, 054027. [Google Scholar] [CrossRef]
- Horvatić, D.; Kekez, D.; Klabučar, D. η′ and η mesons at high T when the UA(1) and chiral symmetry breaking are tied. Phys. Rev. D 2019, 99, 014007. [Google Scholar] [CrossRef]
- Horvatić, D.; Kekez, D.; Klabučar, D. Temperature Dependence of the Axion Mass in a Scenario Where the Restoration of Chiral Symmetry Drives the Restoration of the UA(1) Symmetry. Universe 2019, 5, 208. [Google Scholar] [CrossRef]
- Li, X.; Fu, W.J.; Liu, Y.X. New insight about the effective restoration of UA(1) symmetry. Phys. Rev. D 2020, 101, 054034. [Google Scholar] [CrossRef]
- Pisarski, R.D.; Rennecke, F. Conjectures about the Chiral Phase Transition in QCD from Anomalous Multi-Instanton Interactions. Phys. Rev. Lett. 2024, 132, 251903. [Google Scholar] [CrossRef]
- Tomiya, A.; Cossu, G.; Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J. Evidence of effective axial U(1) symmetry restoration at high temperature QCD. Phys. Rev. D 2017, 96, 034509. [Google Scholar] [CrossRef]
- Aoki, S.; Aoki, Y.; Cossu, G.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Rohrhofer, C.; Suzuki, K.; JLQCD collaboration. Study of the axial U(1) anomaly at high temperature with lattice chiral fermions. Phys. Rev. D 2021, 103, 074506. [Google Scholar] [CrossRef]
- Fejös, G.; Patkos, A. Backreaction of mesonic fluctuations on the axial anomaly at finite temperature. Phys. Rev. D 2022, 105, 096007. [Google Scholar] [CrossRef]
- Azcoiti, V. Spectral density of the Dirac-Ginsparg-Wilson operator, chiral U(1)A anomaly, and analyticity in the high temperature phase of QCD. Phys. Rev. D 2023, 107, 11. [Google Scholar] [CrossRef]
- Fejos, G.; Patkos, A. Thermal behavior of effective UA(1) anomaly couplings in reflection of higher topological sectors. Phys. Rev. D 2024, 109, 036035. [Google Scholar] [CrossRef]
- Giordano, M. Constraints on the Dirac spectrum from chiral symmetry restoration. Phys. Rev. D 2024, 110, L091504. [Google Scholar] [CrossRef]
- Ma, Y.L.; Rho, M. Dichotomy of Baryons as Quantum Hall Droplets and Skyrmions: Topological Structure of Dense Matter. Symmetry 2021, 13, 1888. [Google Scholar] [CrossRef]
- Senthil, T.; Vishwanath, A.; Balents, L.; Sachdev, S.; Fisher, M.P.A. Deconfined Quantum Critical Points. Science 2004, 303, 1490–1494. [Google Scholar] [CrossRef]
- Rho, M. Probing Fractional Quantum Hall Sheets in Dense Baryonic Matter. arXiv 2022, arXiv:2211.14890. [Google Scholar] [CrossRef]
- Lin, F.; Ma, Y.L. Baryons as vortexes on the η’ domain wall. J. High Energy Phys. 2024, 5, 270. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Ma, Y.; Ma, Y.L. Peak of sound velocity, scale symmetry and nuclear force in baryonic matter. arXiv 2024, arXiv:2410.04142. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Ma, Y.; Ma, Y.L. Nuclear matter properties from chiral-scale effective theory including a dilatonic scalar meson. arXiv 2024, arXiv:2412.19023. [Google Scholar] [CrossRef]
- Lin, F.; Ma, Y.L. Confined monopoles in a chiral bag. Phys. Rev. D 2025, 112, 014009. [Google Scholar] [CrossRef]
- Lin, F.; Ma, Y.L. Baryon Construction with η′ Meson Field. Symmetry 2025, 17, 477. [Google Scholar] [CrossRef]
- Cheng, M.; Musser, S.; Raz, A.; Seiberg, N.; Senthil, T. Ordering the topological order in the fractional quantum Hall effect. arXiv 2025, arXiv:2505.14767. [Google Scholar] [CrossRef]
- Sheng, B.K.; Ma, Y.L. Connecting dilaton thermal fluctuation with the Polyakov loop at finite temperature. arXiv 2025, arXiv:2506.13549. [Google Scholar] [CrossRef]
- Bélusca-Maïto, H.; Ilakovac, A.; Kühler, P.; Mađor-Božinović, M.; Stöckinger, D.; Weißwange, M. Introduction to Renormalization Theory and Chiral Gauge Theories in Dimensional Regularization with Non-Anticommuting γ5. Symmetry 2023, 15, 622. [Google Scholar] [CrossRef]
- Bélusca-Maïto, H.; Ilakovac, A.; Kühler, P.; Mađor-Božinović, M.; Stöckinger, D. Two-loop application of the Breitenlohner-Maison/’t Hooft-Veltman scheme with non-anticommuting γ5: Full renormalization and symmetry-restoring counterterms in an abelian chiral gauge theory. J. High Energy Phys. 2021, 11, 159. [Google Scholar] [CrossRef]
- Kühler, P.; Stöckinger, D.; Weißwange, M. Advances at the γ5-Frontier. PoS 2024, LL2024, 022. [Google Scholar] [CrossRef]
- Ebert, P.L.; Kühler, P.; Stöckinger, D.; Weißwange, M. Shedding light on evanescent shadows — Exploration of non-anticommuting γ5 in Dimensional Regularisation. J. High Energy Phys. 2025, 1, 114. [Google Scholar] [CrossRef]
- Kühler, P.; Stöckinger, D. Two-Loop Renormalization of a Chiral SU(2) Gauge Theory in Dimensional Regularization with Non-Anticommuting γ5. arXiv 2025, arXiv:2504.06080. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klabučar, D. Special Issue: Chiral Symmetry in Physics. Symmetry 2025, 17, 1346. https://doi.org/10.3390/sym17081346
Klabučar D. Special Issue: Chiral Symmetry in Physics. Symmetry. 2025; 17(8):1346. https://doi.org/10.3390/sym17081346
Chicago/Turabian StyleKlabučar, Dubravko. 2025. "Special Issue: Chiral Symmetry in Physics" Symmetry 17, no. 8: 1346. https://doi.org/10.3390/sym17081346
APA StyleKlabučar, D. (2025). Special Issue: Chiral Symmetry in Physics. Symmetry, 17(8), 1346. https://doi.org/10.3390/sym17081346